留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多源图像融合的光伏面板缺陷检测

闫号 戴佳佳 龚小溪 吴宇祥 汪俊

闫号, 戴佳佳, 龚小溪, 吴宇祥, 汪俊. 基于多源图像融合的光伏面板缺陷检测[J]. 红外技术, 2023, 45(5): 488-497.
引用本文: 闫号, 戴佳佳, 龚小溪, 吴宇祥, 汪俊. 基于多源图像融合的光伏面板缺陷检测[J]. 红外技术, 2023, 45(5): 488-497.
YAN Hao, DAI Jiajia, GONG Xiaoxi, WU Yuxiang, WANG Jun. Defect Detection of Photovoltaic Panel Based on Multisource Image Fusion[J]. Infrared Technology , 2023, 45(5): 488-497.
Citation: YAN Hao, DAI Jiajia, GONG Xiaoxi, WU Yuxiang, WANG Jun. Defect Detection of Photovoltaic Panel Based on Multisource Image Fusion[J]. Infrared Technology , 2023, 45(5): 488-497.

基于多源图像融合的光伏面板缺陷检测

详细信息
    作者简介:

    闫号(1998-),男,硕士研究生,研究方向为图像处理、数字化设计与制造。E-mail:864650996@qq.com

    通讯作者:

    汪俊(1989-),男,博士,教授,研究方向为数字化检测技术、深度学习。E-mail:wjun@nuaa.edu.cn

  • 中图分类号: TP181

Defect Detection of Photovoltaic Panel Based on Multisource Image Fusion

  • 摘要: 传统光伏面板缺陷检测任务以人工目视方法为主,存在效率低、精度差、成本高等问题。提出基于深度学习的融合光伏面板可见光图像与红外图像的缺陷检测网络,即多源图像融合网络(Multi-source Fusion Network, MF-Net),实现光伏面板的缺陷检测。MF-Net以YOLOv3 tiny为主干结构,并针对光伏面板缺陷特征进行网络结构改进。其中包括:在特征提取模块中增加网络深度并融入密集块结构,使得MF-Net能够融合更多高层语义信息的同时增强特征的选择;将双尺度检测增加为三尺度检测,以提高网络对不同尺寸缺陷的适用度。此外,提出自适应融合模块,使特征图融合过程中可以根据像素邻域信息自适应分配融合系数。实验结果表明,相比基于YOLOv3 tiny的融合网络,改进后的融合检测网络mAP提高7.41%;自适应融合模块使mAP进一步提升2.14%,且自适应融合模块能够有效提高特征的显著性;在与单一图像(仅有可见光图像或红外图像)的检测网络及其他融合图像检测网络的对比实验中,所提出的网络F1 score最高(F1=0.86)。
  • 图  1  红外图像热斑

    Figure  1.  Hot spots on the infrared image

    图  2  MF-Net框架

    Figure  2.  Framework for MF-Net

    图  3  特征提取模块

    Figure  3.  Feature extraction module

    图  4  密集块结构

    Figure  4.  Dense block structure

    图  5  自适应融合策略

    Figure  5.  Adaption fusion strategy

    图  6  硬件平台与数据采集

    Figure  6.  Hardware platform and data collection

    图  7  图像获取与配准

    Figure  7.  Image acquisition and registration

    图  8  五种缺陷在不同融合检测网络中的P-R测试曲线

    Figure  8.  P-R curves of five kinds of defects in different fusion detection networks

    图  9  基于单一图像或多源图像对不同缺陷的检测结果对比

    ((a)基于可见光图像检测结果;(b)基于红外图像检测结果;(c)本文方法检测结果;(d)实际缺陷类型及位置)

    Figure  9.  Comparison of detection results of different defects based on single image or multi-source image

    ((a) Detection results based on visible image; (b) Based on infrared image detection results; (c) Detection results of this method; (d) Actual defect type and location)

    表  1  改进前后网络模型对比

    Table  1.   Comparison parameters of network model before and after improvement

    Network model Model size/Mb FLOPS/Gb
    YOLOv3 245.3 63.20
    YOLOv3 tiny 33.4 5.56
    MF-Net 35.6 6.02
    下载: 导出CSV

    表  2  数据集分配统计

    Table  2.   Distributions of our dataset

    Number of images/pairs Crazing Shadow Covering Bubble Internal
    Filtered images 659 103 398 367 96 403
    Enhanced images 1000 544 552 534 537 565
    Training set 700 366 363 349 356 371
    Validation set 100 60 63 61 59 64
    Test set 200 118 126 124 122 130
    下载: 导出CSV

    表  3  网络训练参数

    Table  3.   Network training parameters

    Parameter Value Parameter Value
    Input size 416×416 Epoch 200
    Batch size 2 Momentum 0.9
    Learning rate 0.0005 Confidence 0.65
    下载: 导出CSV

    表  4  消融实验结果

    Table  4.   Results of ablation experiences

    S/N Replace Conv. Three scale detection Dense Block mAP FPS
    1 75.93% 11.23
    2 82.02%(+6.09%) 8.13(-3.10)
    3 76.21%(+0.28%) 9.43(-1.80)
    4 80.96%(+5.03%) 11.36(+0.13)
    5 83.34%(+7.41%) 7.41(-3.82)
    下载: 导出CSV

    表  5  不同网络框架对比评估

    Table  5.   Comparative evaluation of different networks

    S/N Model Input Correct detection Correct classification FPS F1 score
    1 Improved YOLOv3 tiny Visible image 320 297 12.61 0.53
    2 Improved YOLOv3 tiny Infrared image 497 103 12.63 0.17
    3 MF-Net and channel addition strategy Multi-source image 553 516 7.41 0.82
    4 SSD Multi-source image 512 446 1.31 0.72
    5 Ours Multi-source image 559 538 7.39 0.86
    下载: 导出CSV
  • [1] Alves R H F, Deus Júnior G A, Marra E G, et al. Automatic fault classification in photovoltaic modules using Convolutional Neural Networks[J]. Renewable Energy, 2021, 179: 502-516. doi:  10.1016/j.renene.2021.07.070
    [2] 闫冯渊. 实用化光伏组件监测电路研制[D]. 北京: 华北电力大学, 2021.

    YAN Fengyuan. Development of Practical Monitoring Circuit For Photovoltaic Modules[D]. Beijing: North China Electric Power University, 2021.
    [3] 林剑春, 杨爱军, 沈熠辉. 电致发光缺陷检测仪的成像性能评估[J]. 光学精密工程, 2017, 25(6): 1418-1424. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201706003.htm

    LIN Jianchun, YANG Aijun, SHEN Yihui. Evaluation of imaging performance for electroluminescence defect detector[J]. Optics and Precision Engineering, 2017, 25(6): 1418-1424. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201706003.htm
    [4] LI X, LI W, YANG Q, et al. An unmanned inspection system for multiple defects detection in photovoltaic plants[J]. IEEE Journal of Photovoltaics, 2020, 10(2): 568-576. doi:  10.1109/JPHOTOV.2019.2955183
    [5] Espinosa A R, Bressan M, Giraldo L F. Failure signature classification in solar photovoltaic plants using RGB images and convolutional neural networks – Science Direct[J]. Renewable Energy, 2020, 162: 249-256. doi:  10.1016/j.renene.2020.07.154
    [6] 邓堡元, 何赟泽, 王洪金, 等. 光伏电池图像序列的深度学习检测方法[J]. 机械工程学报, 2021, 57(8): 98-106. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202108009.htm

    DENG Baoyuan, HE Yunze, WANG Hongjin, et al. Deep learning inspection for photovoltaic cell image sequence[J]. Journal of Mechanical Engineering, 2021, 57(8): 98-106. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202108009.htm
    [7] 孙智权, 周奇, 陈震, 等. 基于CMOS图像传感器的太阳能电池缺陷检测系统设计[J]. 仪表技术与传感器, 2018(1): 60-63. doi:  10.3969/j.issn.1002-1841.2018.01.015

    SUN Zhiquan, ZHOU Qi, CHEN Zhen, et al. Design of solar cell defects detection system based on CMOS image sensor[J]. Instrument Technique and Sensor, 2018(1): 60-63. doi:  10.3969/j.issn.1002-1841.2018.01.015
    [8] HE Y, DU B, HUANG S. Noncontact electromagnetic induction excited infrared thermography for photovoltaic cells and modules inspection[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5585-5593. doi:  10.1109/TII.2018.2822272
    [9] 郭梦浩, 徐红伟. 基于Faster RCNN的红外热图像热斑缺陷检测研究[J]. 计算机系统应用, 2019, 28(11): 265-270. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY201911039.htm

    GUO Menghao, XU Hongwei. Hot spot defect detection based on infrared thermal image and Faster RCNN[J]. Computer Systems & Applications, 2019, 28(11): 265-270. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY201911039.htm
    [10] 谢春宇. 基于红外与可见光双模图像融合的目标检测跟踪技术研究[D]. 南京: 东南大学, 2020.

    XIE Chunyu. Research on target detection and tracking technology based on infrared and visible dual mode image fusion[D]. Nanjing: Southeast University, 2020.
    [11] SONG H, LIU Z, DU H, et al. Depth-aware salient object detection and segmentation via multiscale discriminative saliency fusion and bootstrap learning[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4204-4216. doi:  10.1109/TIP.2017.2711277
    [12] 郑欣悦, 赖际舟, 吕品, 等. 基于红外视觉/激光雷达融合的目标识别与定位方法[J]. 导航定位与授时, 2021, 8(3): 34-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS202103007.htm

    ZHENG Xinyue, LAI Jizhou, LV Pin, et al. Object detection and positioning method based on infrared vision/lidar fusion[J]. Navigation Positioning & Timing, 2021, 8(3): 34-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS202103007.htm
    [13] 康硕, 柯臻铮, 王璇, 等. 基于红外和可见光图像融合的铺丝缺陷检测方法[J]. 航空学报, 2021, 42(12): 425187. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202203045.htm

    KANG Shuo, KE Zhenzheng, WANG Xuan, et al. Detection method of defects in automatic fiber placement based on infrared and visible image fusion[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 425187. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202203045.htm
    [14] LIU D, ZHOU D, NIE R, et al. Infrared and visible image fusion based on convolutional neural network model and saliency detection via hybrid l0-l1 layer decomposition[J]. Journal of Electronic Imaging, 2018, 27(6): 063036. http://www.researchgate.net/publication/329955538_Infrared_and_visible_image_fusion_based_on_convolutional_neural_network_model_and_saliency_detection_via_hybrid_l0-l1_layer_decomposition
    [15] 马旗, 朱斌, 程正东, 等. 基于双通道的快速低空无人机检测识别方法[J]. 光学学报, 2019, 39(12): 105-115. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201912012.htm

    MA Qi, ZHU Bin, CHENG Zhengdong, et al. Detection and recognition method of fast low-altitude unmanned aerial vehicle based on dual channel[J]. Acta Optica Sinica, 2019, 39(12): 105-115. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201912012.htm
    [16] 白玉, 侯志强, 刘晓义, 等. 基于可见光图像和红外图像决策级融合的目标检测算法[J]. 空军工程大学学报: 自然科学版, 2020, 21(6): 53-59, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC202006009.htm

    BAI Yu, HOU Zhiqiang, LIU Xiaoyi, et al. An object detection algorithm based on decision-level fusion of visible light image and infrared image[J]. Journal of Air Force Engineering University: Natural Science Edition, 2020, 21(6): 53-59, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC202006009.htm
    [17] 唐聪, 凌永顺, 杨华, 等. 基于深度学习的红外与可见光决策级融合检测(英文)[J]. 红外与激光工程, 2019, 48(6): 456-470. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201906045.htm

    TANG Cong, LING Yongshun, YANG Hua, et al. Decision-level fusion detection for infrared and visible spectra based on deep learning[J]. Infrared and Laser Engineering, 2019, 48(6): 456-470. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201906045.htm
    [18] 刘家银, 印杰, 牛博威, 等. 海量网站中博彩类违法网站的捕获方法[J]. 数据采集与处理, 2021, 36(5): 1050-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ202105021.htm

    LIU Jiayin, YIN Jie, NIU Bowei, et al. Capture methods of gambling related illegal websites in massive websites[J]. Journal of Data Acquisition and Processing, 2021, 36(5): 1050-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ202105021.htm
    [19] DING S, LONG F, FAN H, et al. A novel YOLOv3-tiny network for unmanned airship obstacle detection[C]// IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), 2019: 277-281.
    [20] HUANG G, LIU Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
    [21] Pech-Pacheco J L, Cristóbal G, Chamorro-Martinez J, et al. Diatom autofocusing in bright field microscopy: a comparative study[C]//Proceedings 15th International Conference on Pattern Recognition, 2000, 3: 314-317.
    [22] JIANG Q, LIU Y, YAN Y, et al. A contour angle orientation for power equipment infrared and visible image registration[J]. IEEE Transactions on Power Delivery, 2020, 36(4): 2559-2569. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9149795
    [23] DENG J, DONG W, Socher R, et al. Imagenet: A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009: 248-255.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  284
  • HTML全文浏览量:  63
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-17
  • 修回日期:  2022-09-13
  • 刊出日期:  2023-05-20

目录

    /

    返回文章
    返回