留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料板在变温场下的超声导波传播特性及损伤成像方法

王长林 任利 钟永腾

王长林, 任利, 钟永腾. 复合材料板在变温场下的超声导波传播特性及损伤成像方法[J]. 红外技术, 2022, 44(12): 1338-1343.
引用本文: 王长林, 任利, 钟永腾. 复合材料板在变温场下的超声导波传播特性及损伤成像方法[J]. 红外技术, 2022, 44(12): 1338-1343.
WANG Changlin, REN Li, ZHONG Yongteng. Study on Ultrasonic Guided Wave Propagation Characteristics and Damage Imaging for Composite Structures Under Variable Temperature Field[J]. Infrared Technology , 2022, 44(12): 1338-1343.
Citation: WANG Changlin, REN Li, ZHONG Yongteng. Study on Ultrasonic Guided Wave Propagation Characteristics and Damage Imaging for Composite Structures Under Variable Temperature Field[J]. Infrared Technology , 2022, 44(12): 1338-1343.

复合材料板在变温场下的超声导波传播特性及损伤成像方法

基金项目: 

国家自然科学基金青年科学基金项目 51505339

浙江省自然科学基金青年基金项目 LQ16E050005

详细信息
    作者简介:

    王长林(1983-),男,江苏盐城人,硕士,讲师,主要从事目标检测方面的研究工作。E-mail:wangcl@jsou.edu.cn

    通讯作者:

    钟永腾(1984-),男,福建龙岩人,博士,副教授,主要从事结构健康监测技术方面的研究工作。E-mail:zhongyongteng@wzu.edu.cn

  • 中图分类号: V219

Study on Ultrasonic Guided Wave Propagation Characteristics and Damage Imaging for Composite Structures Under Variable Temperature Field

  • 摘要: 基于Lamb波的损伤监测方法已在复合材料结构健康监测中得到了广泛的应用。然而,复合材料结构的服役环境复杂多变,超声导波信号极易被外界因素干扰。本文研究了玻璃纤维层合板在变温场下的超声导波特性及损伤成像修正方法。首先,利用红外热成像仪研究持续加热下超声导波信号幅值和相位的变化规律,并构建因变温引起的幅相误差矩阵。其次,将误差矩阵代入多重信号分类(2D-MUSIC)算法中修正导向矢量,并建立代价函数迭代出准确损伤位置。玻璃纤维复合材料层合板的模拟损伤实验表明该方法有效提高了2D-MUSIC算法在变温场下的损伤定位分辨率和精度。
  • 图  1  变温下阵列信号传播模型示意图

    Figure  1.  Array signal model under temperature fields

    图  2  变温环境下补偿2D-MUSIC算法流程

    Figure  2.  2D-MUSIC based localization procedure

    图  3  变温场下玻璃纤维环氧树脂板的实验测试系统

    Figure  3.  Experimental setup of inconsistent temperature field

    图  4  传感器PZT S0超声导波响应信号在局部加热300 s前后的幅值相位变化

    Figure  4.  The direct wave of PZT S0 gain-phase contrast after heating 300 s

    图  5  局部持续加热状态下传感器PZT S0超声导波信号幅值衰减与相位延迟曲线

    Figure  5.  Gain-phase errors contrast of PZT S0 under variable temperature field

    图  6  局部温度70.77℃时的响应时域信号

    Figure  6.  Array signal at local temperature 70.77℃

    图  7  变温场下算法修正前后的定位效果比较

    Figure  7.  Impact location comparison under variable temperature

    表  1  不同变温度环境下损伤定位结果及误差统计

    Table  1.   Damage localization results and errors under variable temperature

    No. Temperature/℃ ${\hat r_1}$/cm ${\hat \theta _1}$/° E1r E1θ
    1 21.87 25.7 93 0.7 3
    2 29.54 24.3 93 0.7 1
    3 39.80 24.4 93 0.6 3
    4 49.86 25.9 93 0.9 3
    5 60.65 24.6 91 0.4 1
    6 70.77 23.8 93 1.2 3
    7 78.67 25.7 93 0.7 3
    下载: 导出CSV
  • [1] WANG X Y, HE J J, GAO W H, et al. Three-dimensional damage quantification of low velocity impact damage in thin composite plates using phased-array ultrasound[J]. Ultrasonics, 2020, 110: 106264.
    [2] 王志凌, 袁慎芳, 邱雷, 等. 基于压电超声相控阵方法的结构多损伤监测[J]. 振动测试与诊断, 2014(5): 796-801. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201405002.htm

    WANG Z L, YUAN S F, QIU L, et al. Multi-damage monitoring method based on piezoelectric ultrasonic phased array[J]. Journal of Vibration, Measurement & Diagnosis, 2014(5): 796-801. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201405002.htm
    [3] YANG H, LEE Y J, Lee S K. Impact source localization in plate utilizing multiple signal classification[C]//Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2013, 227: 703-713.
    [4] 苏永振, 袁慎芳, 王瑜. 基于多重信号分类算法的复合材料冲击定位[J]. 复合材料学报, 2010(3): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201003016.htm

    SU Y Z, YUAN S F, WANG Y. Impact localization in composite using multiple signal classification method[J]. Acta Materiae Compositae Sinica, 2010(3): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201003016.htm
    [5] ZHONG Y T, XIANG J W, CHEN X. et al. Multiple signal classification-based impact localization in composite structures using optimized ensemble empirical mode decomposition[J]. Appl. Sci. , 2018, 8(9): 1447. doi:  10.3390/app8091447
    [6] ZUO H, YANG Z, Xu C, et al. Damage identification for plate-like structures using ultrasonic guided wave based on improved MUSIC method[J]. Composite Structure, 2018, 203: 164-171. doi:  10.1016/j.compstruct.2018.06.100
    [7] Radecki R, Staszewski W J, Uhl T. Impact of changing temperature on lamb wave propagation for damage detection[J]. Key Engineering Materials, 2014, 588: 140-148. https://www.scientific.net/AMM.105-107.621
    [8] Sikdar S, Fiborek P, Kudela P, et al. Effects of debonding on Lamb wave propagation in a bonded composite structure under variable temperature conditions[J]. Smart Materials & Structures, 2019, 28: 015021.
    [9] Francesco Lanza di Scalea, Salvatore Salamone. Temperature effects in ultrasonic lamb wave structural health monitoring systems[J]. Journal of the Acoustical Society of America, 2008, 161: https://doi.org/10.1121/1.2932071. doi:  10.1121/1.2932071
    [10] BAO Q, YUAN S F, WANG Y W, et al. Anisotropy compensated MUSIC algorithm based composite structure damage imaging method[J]. Composite Structure, 2019, 214: 293-303.
    [11] ZHANG Z H, ZHONG Y T, XIANG J W, et al. Phase correction improved multiple signal classification for impact source localization under varying temperature condition[J]. Measurement, 2020, 152: 107374.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  6
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 修回日期:  2022-07-12
  • 刊出日期:  2022-12-20

目录

    /

    返回文章
    返回