一种人体体表三维温度场的融合重建方法

杨炎龙, 徐超

杨炎龙, 徐超. 一种人体体表三维温度场的融合重建方法[J]. 红外技术, 2022, 44(1): 33-40.
引用本文: 杨炎龙, 徐超. 一种人体体表三维温度场的融合重建方法[J]. 红外技术, 2022, 44(1): 33-40.
YANG Yanlong, XU Chao. Fusion Reconstruction Method for 3D Temperature Fields on the Human Body Surface[J]. Infrared Technology , 2022, 44(1): 33-40.
Citation: YANG Yanlong, XU Chao. Fusion Reconstruction Method for 3D Temperature Fields on the Human Body Surface[J]. Infrared Technology , 2022, 44(1): 33-40.

一种人体体表三维温度场的融合重建方法

详细信息
    作者简介:

    杨炎龙(1995-),男,硕士研究生,主要从事三维重建与红外图像处理方面的研究。E-mail:164579504@qq.com

    通讯作者:

    徐超(1979-),男,讲师,主要从事光电图像处理和光电成像技术与系统方面的研究。E-mail:rockyxu@bit.edu.cn

  • 中图分类号: TN219

Fusion Reconstruction Method for 3D Temperature Fields on the Human Body Surface

  • 摘要: 重建人体体表三维温度场能够为包括诊断在内的多项人体医学分析提供可靠数据。由于红外成像具有温度测量精度低、成像分辨率不足以及显示效果较差等缺陷,导致重建的目标三维温度场的可靠性存在不足。针对这些问题,提出一种针对人体体表的三维温度场的融合重建方法。即首先采用黑体测温标定的方法,对红外热像仪的测温结果进行误差修正;其次对红外图像进行对比度增强处理;之后进行超分辨率处理,使红外图像在空间分辨率上匹配三维数据;最后在数据融合阶段,基于不同图像中提取到的靶标特征点对应空间中相同位置的事实,对标定得到的系统结构参数进行误差修正。实验表明,该方法使三维温度场的测温精度达到0.26℃以下,温度场的三维分布结果得到提升,显示效果也得到了增强。
    Abstract: Reconstruction of 3D temperature fields on the human body surface can provide reliable data for a number of human medical analyses, including diagnoses. Based on the limitations of infrared imaging, such as poor temperature measurement accuracy, insufficient imaging resolution, and poor display effects, the reliability of the 3D temperature field collected using infrared imaging is low. To overcome these problems, we propose a fusion reconstruction method for 3D temperature fields on the human body surface. First, the blackbody temperature measurement and calibration method is used to correct the errors in the temperature measurement results of an infrared thermal imager. Second, contrast enhancement processing is applied. Third, super-resolution processing is used to make the infrared images match the 3D data in terms of spatial resolution. Finally, in the data fusion stage, based on the fact that the target feature points extracted from different images correspond to the same position in the space, the system structure parameters obtained through calibration are corrected. Experimental results demonstrate that the temperature error of the 3D temperature field is less than 0.26℃, the 3D distribution of the temperature field is improved, and the display effect is enhanced.
  • 图  1   人体体表三维温度场成像系统实物图

    Figure  1.   Human body surface 3D temperature field imaging system

    图  2   数据处理流程图

    Figure  2.   Data processing flow chat

    图  3   系统中相机坐标系的示意图

    Figure  3.   A diagram of camera coordinate in the system

    图  4   热像仪测温标定曲线

    Figure  4.   Thermal imaging camera temperature measurement calibration curve

    图  5   测量点的位置

    Figure  5.   Position of measuring points

    图  6   红外图像映射曲线

    Figure  6.   Infrared image mapping curve

    图  7   红外图像及直方图增强前后结果:增强前(左),增强

    Figure  7.   The results before and after the infrared image and histogram enhancement: Before (left), after (right)

    图  8   红外图像预处理过程

    Figure  8.   Infrared image pre-processing

    图  9   红外图像预处理前(左)后(右)的三维温度场重建

    Figure  9.   Reconstruction results of 3D temperature field before(left) and after(right) infrared image preprocessing

    图  10   标定靶标与场景以及标定图像

    Figure  10.   Calibration board and setup and calibration result

    图  11   修正前后的靶标三维温度场与空间分布曲线

    Figure  11.   Target 3D temperature field and spatial distribution curves before and after correction

    图  12   人体体表部分区域的三维温度场融合模型结果

    Figure  12.   Results of 3D temp. field fusion model in parts of the human body surface

    表  1   手背部分区域测温修正结果

    Table  1   Temperature measurement correction results of the hand back

    Area T/℃ T0/℃ Tt/℃ E0/℃ Et/℃ Advance
    1 36.28 35.11 36.35 1.17 −0.17 85.47%
    2 36.71 36.20 36.61 0.51 0.10 80.39%
    3 35.45 34.03 35.20 1.42 0.25 82.39%
    4 36.10 35.27 36.22 0.83 −0.12 85.54%
    5 35.69 34.54 35.87 1.15 −0.18 84.34%
    下载: 导出CSV

    表  2   人脸三维温度场融合重建结果分析

    Table  2   Analysis on 3D temp. fusion reconstruction of human face

    Region D0/mm D/mm ED/mm T0/℃ T/℃ ET/℃
    Left eye 27.005 26.8 0.205 36.10 35.91 0.19
    Right eye 23.907 24.1 -0.193 35.81 35.55 0.26
    Nose 37.553 37.8 -0.247 36.03 36.15 0.12
    Mouth 34.211 34.3 -0.089 36.22 36.09 0.13
    下载: 导出CSV
  • [1] 陈丙瑞. 红外热像仪在医学中的应用与测量误差的研究[D]. 秦皇岛: 燕山大学, 2009.

    CHEN Bingrui. Application of Infrared Thermal Imager in Medicine and Research on Measurement Error[D]. Qinhuangdao: Yanshan University, 2009.

    [2]

    Kennedy D A, Lee T, Seely D. A comparative review of thermography as a breast cancer screening technique[J]. Integrative Cancer Therapies, 2009, 8(1): 9-16. DOI: 10.1177/1534735408326171

    [3]

    YANG R, CHEN Y. Design of a 3-D infrared imaging system using structured light[J]. IEEE Trans. on Instrumentation and Measurement, 2011, 60(2): 608-617. DOI: 10.1109/TIM.2010.2051614

    [4]

    Vidas S, Lakemond R, Denman S, et al. A mask-based approach for the geometric calibration of thermal-infrared cameras[J]. IEEE Trans. on Instrumentation and Measurement, 2012, 61(6): 1625-1635. DOI: 10.1109/TIM.2012.2182851

    [5]

    Rangel J, Soldan S, Kroll A. 3D thermal imaging: fusion of thermography and depth cameras[C/OL]//International Conference on Quantitative Infrared Thermography, [2014-01-20], 2014: https://www.researchgate.net/publication/269984262_3D_Thermal_Imaging_Fusion_of_Thermography_and_Depth_Cameras.

    [6]

    AN Y, ZHAG S. High-resolution, real-time simultaneous 3D surface geometry and temperature measurement[J]. Optics Express, 2016, 24(13): 14552-14563. DOI: 10.1364/OE.24.014552

    [7]

    CAO Y, XU B, YE Z, et al. Depth and thermal sensor fusion to enhance 3D thermographic reconstruction[J]. Optics Express, 2018, 26(7): 8179-8193. DOI: 10.1364/OE.26.008179

    [8]

    XU B, YE Z, WANG F, et al. On-the-fly extrinsic calibration of multimodal sensing system for fast 3D thermographic scanning[J]. Applied Optics, 2019, 58(12): 3238-3246. DOI: 10.1364/AO.58.003238

    [9]

    Schramm S, Rangel J, Kroll A, et al. Data fusion for 3D thermal imaging using depth and stereo camera for robust self-localization[C]//Static Analysis Symposium, 2018: 1-6.

    [10] 张晓晔, 徐超, 何利民, 等. 非制冷红外热像仪人体表面温度场测量及误差修正[J]. 红外与激光工程, 2016, 45(10): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201610006.htm

    ZHANG Xiaoye, XU Chao, HE Limin, et al. Measuring and error correcting of human surface with uncooled infrared camera[J]. Infrared and Laser Engineering, 2016, 45(10): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201610006.htm

    [11]

    Zuiderveld K. Contrast limited adaptive histogram equalization[C]// Graphics gems IV, 1994: 474-485.

    [12]

    DONG C, Loy C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2015, 38(2): 295-307.

    [13]

    Polyanskiy M N, Refractive index database[EB/OL]. [2019-10-18]. https://refractiveindex.info.

图(12)  /  表(2)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  47
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-27
  • 修回日期:  2020-05-19
  • 刊出日期:  2022-01-19

目录

    /

    返回文章
    返回