留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏振成像技术的研究进展及应用

周强国 黄志明 周炜

周强国, 黄志明, 周炜. 偏振成像技术的研究进展及应用[J]. 红外技术, 2021, 43(9): 817-828.
引用本文: 周强国, 黄志明, 周炜. 偏振成像技术的研究进展及应用[J]. 红外技术, 2021, 43(9): 817-828.
ZHOU Qiangguo, HUANG Zhiming, ZHOU Wei. Research Progress and Application of Polarization Imaging Technology[J]. Infrared Technology , 2021, 43(9): 817-828.
Citation: ZHOU Qiangguo, HUANG Zhiming, ZHOU Wei. Research Progress and Application of Polarization Imaging Technology[J]. Infrared Technology , 2021, 43(9): 817-828.

偏振成像技术的研究进展及应用

基金项目: 

国家自然科学基金委员会杰出青年基金 61625505

详细信息
    作者简介:

    周强国(1995-), 男, 安徽亳州人, 硕士研究生, 主要从事红外成像及太赫兹探测技术研究。E-mail:qgzhouhq@163.com

    通讯作者:

    黄志明(1971-), 男, 湖南岳阳人, 研究员, 博士生导师, 国家杰出青年基金获得者, 主要从事红外与太赫兹相关领域研究。E-mail:zmhuang@mail.sitp.ac.cn

  • 中图分类号: TP274.52

Research Progress and Application of Polarization Imaging Technology

  • 摘要: 偏振成像技术的优势是把信息量从3个自由度,即光强、光谱和空间,扩充到7个自由度,包括光强、光谱、空间、偏振度、偏振方位角、偏振椭率和旋转方向,这种观测信息量的丰富有利于提高对研究目标探测的精确度。本文首先介绍在近几十年内偏振成像技术在国内外的研究进展,其次介绍偏振技术在军事及民用领域的典型应用,最后对我国在偏振成像技术方面存在的问题给出合理的建议。
  • 图  1  AOTF偏振光谱成像仪设计原理

    Figure  1.  AOTF polarization spectral imager design principle

    图  2  基于AOTF的偏振成像光谱仪

    Figure  2.  Polarization imaging spectrometer based on AOTF

    图  3  基于AOTF的全Stokes ISP系统

    Figure  3.  All-ISP Stokes system based on AOTF

    图  4  分焦面偏振成像系统结构示意图

    Figure  4.  Schematic diagram of polarization imaging system on focal plane

    图  5  光栅干涉型偏振成像系统

    Figure  5.  Grating interferometric polarization imaging system

    图  6  分孔径偏振成像光学系统

    Figure  6.  Sub-aperture polarized imaging optical system

    图  7  线栅结构

    Figure  7.  Raster structure

    图  8  沃拉斯顿棱镜原理结构

    Figure  8.  Wollaston prism

    图  9  双沃拉斯顿棱镜偏振成像系统

    Figure  9.  Wollaston prism polarization imaging system

    图  10  LIP的组成以及结构示意图

    Figure  10.  Lip is a schematic diagram of its composition and structure

    图  11  POLDER的光学原理图

    Figure  11.  An optical schematic of POLDER

    图  12  Savart干涉偏振成像仪结构示意图

    Figure  12.  Savart interference polarization imager

    图  13  多角度偏振成像仪(上)及仪器结构(下)

    Figure  13.  Multi-angle polarization imager (up) and instrument structure (down)

    图  14  MM-16相位调制椭圆偏振光谱仪

    Figure  14.  MM-16 phase modulation ellipsometry spectrometer

    图  15  MM-16相位调制椭圆偏振光谱仪原理示意图

    Figure  15.  MM-16 phase modulation ellipsometric spectrometer schematic diagram

    图  16  不同成像条件下野外环境中的车辆

    Figure  16.  Vehicles in field environment under different imaging conditions

    图  17  飞机具有偏振特性

    Figure  17.  Polarization properties of aircraft

    图  18  红外偏振、非偏振成像对比

    Figure  18.  Comparison of infrared polarization and non-polarization imaging

    图  19  对伪装目标野外探测图像对比

    Figure  19.  Comparison of field detection images of camouflage targets

    图  20  红外偏振治诊断仪

    Figure  20.  Infrared polarization therapy diagnostic instrument

    图  21  星载偏振成像光谱仪

    Figure  21.  On board polarization imaging spectrometer

    图  22  机载偏振成像光谱仪

    Figure  22.  Airborne polarization imaging spectrometer

  • [1] 李广德, 刘东青, 王义, 等. 热红外伪装技术的研究现状与进展[J]. 红外技术, 2019, 41(6): 495-503. http://hwjs.nvir.cn/article/id/hwjs201906001

    LI Guangde, LIU Dongqing, WANG Yi, et al. Research status and progress of the thermal infrared camouflage technology[J]. Infrared Technology, 2019, 41(6): 495-503. http://hwjs.nvir.cn/article/id/hwjs201906001
    [2] 张肃, 战俊彤, 白思克, 等. 烟雾浓度对偏振光传输特性的影响[J]. 光学学报, 2016, 36(7): 303-310. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201607040.htm

    ZHANG Su, ZHAN Juntong, BAI Sike, et al. Influence of smoke concentration on transmission characteristics of polarized light[J]. Acta Optica Sinica, 2016, 36(7): 303-310. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201607040.htm
    [3] 王新全, 相里斌, 黄旻, 等. 成像光谱偏振仪研究进展[J]. 光谱学与光谱分析, 2011, 31(7): 1968-1974. doi:  10.3964/j.issn.1000-0593(2011)07-1968-07

    WANG Xinquan, XIANG Libin, HUANG Min, et al. Advance in imaging spectropolarimeter[J]. Spectroscopy And Spectral Analysis, 2011, 31(7): 1968-1974. doi:  10.3964/j.issn.1000-0593(2011)07-1968-07
    [4] 薛鹏. 基于AOTF分光和LCVR相位调制型光谱偏振成像技术研究[D]. 太原: 中北大学, 2017.

    XUE Peng. Research on spectral polarization imaging technology based on AOTF spectroscopy and LCVR phase modulation[D]. Taiyuan: North University of China, 2017.
    [5] 张淳民, 穆廷魁, 颜廷昱, 等. 高光谱遥感技术发展与展望[J]. 航天返回与遥感, 2018, 39(3): 108-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201803016.htm

    ZHANG Chunmin, MU Tingkui, YAN Tingyu, et al. Overview of hyperspectral remote sensing technology[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(3): 108-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201803016.htm
    [6] 李力, 刘旭, 李海峰, 等. 分光棱镜型分振幅光度式偏振测量系统的研究[J]. 光学仪器, 1999(Z1): 159-165. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYQ1999Z1030.htm

    LI Li, LIU Xu, LI Haifeng, et al. Research on a beam splitting prism type amplitude-divided photometric polarization measurement system[J]. Optical Instruments, 1999(Z1): 159-165. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYQ1999Z1030.htm
    [7] ZHANG Z, Blum R S. A categorization of multiscale- decompositionbased image fusion schemes with a performance study for a digital camera application[C]//Proceedings of the IEEE, 1999, 87(8): 1315.
    [8] Taylor J S, Davis P S, Wolff L B. Underwater partial polarization signatures from the Shallow water Real-time imaging polarimeter[C]// OCEANS '02 MTS/IEEE, 2002: 1526-1534. doi: 10.1109/OCEANS.2002.1191863.
    [9] ZHAO Y, GONG P, PAN Q. Object detection by spectropolarimeteric imagery fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3337-3345. doi:  10.1109/TGRS.2008.920467
    [10] Duggin M J, Loe R S. Calibration and exploitation of a narrow-band imaging polarimeter[J]. Optical Engineering, 2002, 41(5): 1039-1047. doi:  10.1117/1.1467935
    [11] 曹汉军, 乔延利, 杨伟锋, 等. 偏振遥感图像特性表征及分析[J]. 量子电子学报, 2002, 19(4): 373-378. doi:  10.3969/j.issn.1007-5461.2002.04.020

    CAO Hanjun, QIAO Yanli, YANG Weifeng, et al. Characterization and analysis of the polarization images in remote sensing[J]. Chinese Journal of Quantum Electronics, 2002, 19(4): 373-348. doi:  10.3969/j.issn.1007-5461.2002.04.020
    [12] 杨之文, 高胜钢, 王培纲. 几种地物反射光的偏振特性[J]. 光学学报, 2005, 25(2): 241-245. doi:  10.3321/j.issn:0253-2239.2005.02.022

    YANG Zhiwen, GAO Shenggang, WANG Peigang. Polarization of reflected light by earth objects[J]. Acta Optica Sinica, 2005, 25(2): 241-245. doi:  10.3321/j.issn:0253-2239.2005.02.022
    [13] 杨伟锋, 洪津, 乔延利, 等. 无人机载偏振CCD相机光机系统设计[J]. 光学技术, 2008, 34(3): 469-473. doi:  10.3321/j.issn:1002-1582.2008.03.023

    YANG Weifeng, HONG Jin, QIAO Yanli, et al. Optical-mechanical system design of unmanned aerial vehicle polarization CCD camera[J]. Optical Technique, 2008, 34(3): 469-473. doi:  10.3321/j.issn:1002-1582.2008.03.023
    [14] 罗海波, 刘燕德, 兰乐佳, 等. 分焦平面偏振成像关键技术[J]. 华东交通大学学报, 2017, 34(1): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201701002.htm

    LUO Haibo, LIU Yande, LAN Lejia, et al. Key Technologies of polarization imaging for division of focal plane polarimeters[J]. Journal of East China Jiaotong University, 2017, 34(1): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201701002.htm
    [15] Lavigne D A, Breton M, Fournier G, et al. A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands[C]//SPIE Defense, Security, & Sensing, 2009: 730010.
    [16] Craven Jones J, Kudenov M W, Stapelbroek M G, et al. Preliminary results from an infrared hyperspectral imaging polarimeter[C]//Proceedings of SPIE, 2011, 8160: 81600T.
    [17] 黄飞. 红外偏振探测关键技术研究[D]. 北京: 中国科学院大学, 2018.

    HUANG Fei. Research on key technologies of infrared polarization detection[D]. Beijing: University of Chinese Academy of Sciences, 2018.
    [18] Laan J, Scrymgeour D A, Kemme S A, et al. Range and contrast imaging improvements using circularly polarized light in scattering environments[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2013, 8706(5): 87060R.
    [19] Tyo J S, Turner T S. Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing[J]. Applied Optics, 2001, 40(9): 1450-1458. doi:  10.1364/AO.40.001450
    [20] Kim J, Escuti M J. Snapshot imaging spectropolarimeter utilizing polarization gratings[C]//SPIE Conference on Imaging Spectrometry, 2008, 7086: 708603.
    [21] 贺虎成. 分孔径同时偏振成像光学系统的研究[D]. 苏州: 苏州大学, 2014.

    HE Hucheng. Research on split aperture simultaneous polarization imaging optical system[D]. Soochow: Soochow University, 2014.
    [22] 陈星, 于淼, 曹亮, 等. 周期性微偏振片阵列特性研究[J]. 现代物理, 2019, 9(1): 23-31.

    CHEN Xin, YU Miao, CAO Liang, et al. Study on characteristics of periodic micropolarizer array[J]. Modern Physics, 2019, 9(1): 23-31.
    [23] 张志刚, 董凤良, 程腾, 等. 基于像素偏振片阵列的实时动态相位测量技术[J]. 中国科学: 技术科学, 2015, 45(5): 491-497. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201505007.htm

    ZHANG Zhigang, DONG Fengliang, CHENG Teng, et al. Real-time dynamic phase measurement based on pixelated micropolarizer array[J]. Scientia Sinica Technologica, 2015, 45(5): 491-497. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201505007.htm
    [24] LU B, WANG H, SHEN J, et al. A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure[J]. AIP Advances, 2016, 6(2): 25215. doi:  10.1063/1.4942515
    [25] Siefke T, Kley E, Tuennermann A, et al. Design and fabrication of titanium dioxide wire grid polarizer for the far ultraviolet spectral range[C]//Proceedings of SPIE, 2016: 992706.
    [26] SHIN Y J, SHIN M J, GUO L J, et al. Fabrication of contact lens containing high-performance wire grid polarizer[J]. Polymer International, 2017, 66(9): 1269-1274. doi:  10.1002/pi.5380
    [27] 秦骁. 红外偏振光成像研究[D]. 长春: 长春理工大学, 2012.

    QIN Xiao. Research on infrared polarized light imaging[D]. Changchun: Changchun University of Science and Technology, 2012.
    [28] 宋茂新. 航空多角度偏振辐射计的光机设计研究[D]. 北京: 中国科学院大学中国科学院研究生院, 2012.

    SONG Maoxin. Research on the opto-mechanical design of aviation multi-angle polarization radiometer[D]. Beijing: University of Chinese Academy of Sciences; Graduate School of Chinese Academy of Sciences, 2012.
    [29] 李军伟, 陈伟力. 红外偏振成像技术与应用[M]. 北京: 科学出版社, 2017.

    LI Junwei, CHEN Weili. Infrared Polarization Imaging Technology and Application[M]. Beijing: Science Press, 2017: 60.
    [30] Kawata Y, Yamazaki A, Kusaka T, et al. Aerosol retrieval from airborne Polder data by multiple scattering model[C]//International Geoscience & Remote Sensing Symposium. IEEE Xplore, 1994, 4: 1895-1897.
    [31] 晏磊, 相云, 李宇波, 等. 偏振遥感研究进展[J]. 大气与环境光学学报, 2010, 5(3): 162-174. doi:  10.3969/j.issn.1673-6141.2010.03.001

    YAN Lei, XIANG Yun, LI Yubo, et al. Progress of polarization remote sensing research[J]. Journal of Atmospheric and Environmental Optics, 2010, 5(3): 162-174. doi:  10.3969/j.issn.1673-6141.2010.03.001
    [32] 张肇先, 王模昌. 探测云和大气气溶胶的专用仪器--卷云探测仪(模样)[C]//中国地球物理学会第13届年会, 1997: 207.

    ZHANG Zhaoxian, WANG Mochang. Cirrus Cloud Detector, a special instrument for detecting clouds and atmospheric aerosols (pattern)[C]//The 13th Annual Meeting of the Chinese Geophysical Society, 1997: 207.
    [33] Williams J W, Tee H S, Poulter M A. Image processing and classification for the UK remote minefield detection system infrared polarimetric camera[J]. SPIE Defense + Commercial Sensing, 2001, 4394(1): 139-152. doi:  10.1117/12.445466
    [34] Jensen G L, Peterson J Q. Hyperspectral imaging polarimeter in the infrared[C]//Infrared Space borne Remote Sensing VI, 1998: 42-51.
    [35] Nordin G P, Meier J T, Deguzman P C. Micropolarizer array for infrared imaging polarimetry[J]. Journal of the Optical Society of America, A. Optics, Image science, and Vision, 1999, 16(5): 1168-1174. doi:  10.1364/JOSAA.16.001168
    [36] Jones S H, Iannarilli F J, Kebabian P L. Realization of quantitative-grade fieldable snapshot imaging spectropolarimeter[J]. Optics Express, 2004, 12(26): 6559. doi:  10.1364/OPEX.12.006559
    [37] Miles B H, Goodson R A, Dereniak E L, et al. Computed-tomography imaging spectropolarimeter (CTISP): instrument concept, calibration and results[C]// Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 1999: 235-245.
    [38] 邵卫东, 王培纲, 王桂平, 等. 分光偏振计技术研究[J]. 中国激光, 2003, 30(1): 60-64. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200301016.htm

    SHAO Weidong, WANG Peigang, WANG Guiping, et al. Study on Spectropolarimeter[J]. Chinese Journal of Lasers, 2003, 30(1): 60-64. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200301016.htm
    [39] 陈立刚, 洪津, 乔延利, 等. 一种高精度偏振遥感探测方式的精度分析[J]. 光谱学与光谱分析, 2008, 28(10): 2384-2387. doi:  10.3964/j.issn.1000-0593(2008)10-2384-04

    CHEN Ligang, HONG Jin, QIAO Yanli, et al. Accuracy analysis on a sort of polarized measurement in remote sensing[J]. Spectroscopy and Spectral Analysis, 2008, 28(10): 2384-2387. doi:  10.3964/j.issn.1000-0593(2008)10-2384-04
    [40] 赵劲松. 偏振成像技术的进展[J]. 红外技术, 2013, 35(12): 743-750. http://hwjs.nvir.cn/article/id/hwjs201312001

    ZHAO Jinsong. Developments of polarization imaging technology[J]. Infrared Technology, 2013, 35(12): 743-750. http://hwjs.nvir.cn/article/id/hwjs201312001
    [41] 穆廷魁, 张淳民, 李祺伟, 等. 差分偏振干涉成像光谱仪I. 概念原理与操作[J]. 物理学报, 2014(11): 110701. doi:  10.7498/aps.63.110701

    MU Tingkui, ZHANG Chunmin, LI Qiwei, et al. The polarizationdifference interference imaging sp ectrometer-I. concept, principle, and operation[J]. Acta Physica Sinica, 2014(11): 110701. doi:  10.7498/aps.63.110701
    [42] 穆廷魁, 张淳民, 赵葆常. 偏振干涉成像光谱仪中Wollaston棱镜光程差及条纹定位面的精确计算与分析[J]. 物理学报, 2009, 58(6): 3877. doi:  10.3321/j.issn:1000-3290.2009.06.043

    MU Tingkui, ZHANG Chunmin, ZHAO Baochang. Calculation of the optical path difference and fringe location in polarization interference imaging spectrometer[J]. Acta Physica Sinica, 2009, 58(6): 3877. doi:  10.3321/j.issn:1000-3290.2009.06.043
    [43] 张海洋, 张军强, 杨斌, 等. 多线阵分焦平面型偏振遥感探测系统的标定[J]. 光学学报, 2016, 36(11): 311-318. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201611038.htm

    ZHANG Haiyang, ZHANG Junqiang, YANG Bin, et al. Calibration for Polarization Remote Sensing System with Focal Plane Divided by Multi-Linear Array[J]. Acta Optica Sinica, 2016, 36(11): 311-318. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201611038.htm
    [44] 李照洲, 伽丽丽, 谢一凇, 等. GF-5卫星多角度偏振成像仪在轨偏振定标[J]. 大气与环境光学学报, 2019, 14(1): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJY201901003.htm

    LI Zhaozhou, JIA Lili, XIE Yisong, et al. In-Flight polarimetric calibration of directional polarization camera on GF-5 satellite[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(1): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJY201901003.htm
    [45] 俞罡. 新型椭圆偏振光谱仪MM-16[J]. 现代科学仪器, 2005(3): 85-88. doi:  10.3969/j.issn.1003-8892.2005.03.031

    YU Gang. New Ellipsometer MM-16[J]. Modern Scientific Instruments, 2005(3): 85-88. doi:  10.3969/j.issn.1003-8892.2005.03.031
    [46] GRANT L. Diffuse and specular characteristics of leaf reflectance[J]. Remote Sensing of Environment, 1987, 22(2): 309-322. doi:  10.1016/0034-4257(87)90064-2
    [47] 吴太夏. 偏振方向反射与二向性反射定量关系研究[D]. 长春: 东北师范大学, 2006.

    WU Taixia. Research on the quantitative relationship between polarization direction reflection and bidirectional reflection[D]. Changchun: Northeast Normal University, 2006.
    [48] Woessner P, Hapke B. Polarization of light scattered by clover[J]. Remote Sensing of Environment, 1987, 21(3): 243-261. doi:  10.1016/0034-4257(87)90011-3
    [49] 韩阳. 长白山地区森林土壤含水量定量遥感研究——利用多角度偏振高光谱信息与MODIS影像数据[D]. 长春: 东北师范大学, 2010.

    HAN Yang. Research on quantitative remote sensing of forest soil water content in Changbai Mountain: Using Multi-angle Polarized Hyperspectral Information and MODIS Image Data[D]. Changchun: Northeast Normal University, 2010.
    [50] 赵云升, 金伦, 张洪波, 等. 土壤的偏振反射特征研究[J]. 东北师大学报: 自然科学版, 2000, 32(4): 93-102. doi:  10.3321/j.issn:1000-1832.2000.04.020

    ZHAO Yunshen, JIN Lun, ZHANG Hongbo, et al. Study on the polarized reflectance characteristics of soil[J]. Journal of Northeast Normal University: Natural Science Edition, 2000, 32(4): 93-102. doi:  10.3321/j.issn:1000-1832.2000.04.020
    [51] Wolff L B. Polarization-based material classification from specular reflection[J]. IEEE Computer Society, 1990, 12(11): 1059-1071.
    [52] Katkovsky L V, Belyaev B I, Belyaev Y V, et al. Spectropolarizational technique for detection of manmade objects in visible and near infrared spectral ranges[C]// IEEE International Geoscience & Remote Sensing Symposium, 1999, 2: 1381-1383.
    [53] 都安平, 赵永强, 潘泉, 等. 基于偏振特征的图像增强算法[J]. 计算机测量与控制, 2007, 15(1): 106-108. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK200701037.htm

    DU Anping, ZHAO Yongqiang, PAN Quan, et al. Image enhancement algorithm based on polarization character[J]. Computer Measurement & Control, 2007, 15(1): 106-108. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK200701037.htm
    [54] Egan W G, Duggin M J. Engineering, Optical enhancement of aircraft detection using polarization[C]//Polarization Analysis, Measurement, and Remote Sensing Ⅲ, 2000: 172-178.
    [55] Egan W G, Duggin M J. Synthesis of optical polarization signatures of military aircraft[C]//Polarization Analysis, Measurement, and Remote Sensing IV, 2002: 188-194.
    [56] Goldstein D H. Polarimetric characterization of federal standard paints[C]//Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 2000: 112-123.
    [57] Tyo J S, Ratliff B M, Boger J K, et al. The effects of thermal equilibrium and contrast in LWIR polarimetric images[J]. Optics Express, 2007, 15(23): 15161-15167. doi:  10.1364/OE.15.015161
    [58] Gurton K, Felton M, Mack R, et al. MidIR and LWIR polarimetric sensor comparison study[C]//SPIE Conference on Detection and Sensing of Mines, Explosive Objects, and Obscured Targets, 2010: 76640L-76641L.
    [59] 姜会林, 付强, 段锦, 等. 红外偏振成像探测技术及应用研究[J]. 红外技术, 2014, 36(5): 345-349. http://hwjs.nvir.cn/article/id/hwjs201405001

    JIANG Huilin, FU Qiang, DUAN Jin, et al. Research on infrared polarization imaging detection technology and application[J]. Infrared Technology, 2014, 36(5): 345-349. http://hwjs.nvir.cn/article/id/hwjs201405001
    [60] 孙晨. 偏振图像的伪彩色增强方法研究[D]. 长春: 长春理工大学, 2018.

    SUN Chen. Research on false color enhancement methods of polarized images[D]. Changchun: Changchun University of Science and Technology, 2018.
    [61] Ratliff B M, Lemaster D A, Mack R T, et al. Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2011, 8160: 25-31.
    [62] ZOU X, WANG X, JIN W, et al. Atmospheric effects on infrared polarization imaging system[J]. Infrared and Laser Engineering, 2012, 41(2): 304-308. http://spie.org/x648.html?product_id=929224
    [63] 王慧斌, 廖艳, 沈洁, 等. 分级多尺度变换的水下偏振图像融合法[J]. 光子学报, 2014, 43(5): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201405033.htm

    WANG Huibin, LIAO Yan, SHEN Jie, et al. Method of Underwater Polarization Image Fusion Based on Hierarchical and multi-scale transform[J]. Acta Photonica Sinica, 2014, 43(5): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201405033.htm
    [64] 刘珂, 李丽娟, 王军平. 红外偏振成像技术在空空导弹上的应用展望[J]. 航空兵器, 2016(4): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201604010.htm

    LIU Ke, LI Lijuan, WANG Junping. Application and prospect of infrared polarization imaging technology in air-to-air missile[J]. Aero Weaponry, 2016(4): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201604010.htm
    [65] 王霞, 夏润秋, 金伟其, 等. 红外偏振成像探测技术进展[J]. 红外与激光工程, 2014(10): 3175-3182. doi:  10.3969/j.issn.1007-2276.2014.10.001

    WANG Xia, XIA Runqiu, JIN Weiqi, et al. Technology progress of infrared polarization imaging detection[J]. Infrared and Laser Engineering, 2014(10): 3175-3182. doi:  10.3969/j.issn.1007-2276.2014.10.001
    [66] 李广德, 刘东青, 王义, 等. 热红外伪装技术的研究现状与进展[J]. 红外技术, 2019, 41(6): 495-503. http://hwjs.nvir.cn/article/id/hwjs201906001

    LI Guangde, LIU Dongqing, WANG Yi, et al. Research status and progress of the thermal infrared camouflage technology[J]. Infrared Technology, 2019, 41(6): 495-503. http://hwjs.nvir.cn/article/id/hwjs201906001
    [67] 赵永强, 马位民, 李磊磊. 红外偏振成像进展[J]. 飞控与探测, 2019, 2(3): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-FKTC201903008.htm

    ZHAO Yongqiang, MA Weimin, LI Leilei. Progress of infrared polarimetric imaging detection[J]. Flight Control & Detection, 2019, 2(3): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-FKTC201903008.htm
    [68] 王霞, 梁建安, 龙华宝, 等. 典型背景和目标的长波红外偏振成像实验研究[J]. 红外与激光工程, 2016, 45(7): 0704002-1-0704002-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201607004.htm

    WANG Xia, LIANG Jian'an, LONG Huabao, et al. Experimental study on long wave infrared polarization imaging of typical background and objectives[J]. Infrared and Laser Engineering, 2016, 45(7): 0704002-1- 0704002-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201607004.htm
    [69] 李范鸣, 牛继勇, 马利祥. 基于红外偏振特性的空间目标探测可行性探讨[J]. 应用光学, 2013, 34(4): 653-657. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201304025.htm

    LI Fanming, NIU Jiyong, MA Lixiang. Feasibility analysis of space target detection based on infrared polarization properties[J]. Journal ofApplied Optics, 2013, 34(4): 653-657. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201304025.htm
    [70] 陈伟力, 孙秋菊, 王淑华, 等. 目标表面发射率对红外辐射偏振特性的影响分析[J]. 光谱学与光谱分析, 2017, 37(3): 737-742. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201703018.htm

    CHEN Weili, SUN Qiuju, WANG Shuhua, et al. Influence analysis of target surface emissivity on infrared radiation polarization characteristics[J]. Spectroscopy and Spectral Analysis, 2017, 37(3): 737-742. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201703018.htm
    [71] Sokolov K, Drezek R, Gossage K, et al. Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology[J]. Optics Express, 1999, 5(13): 302-317. doi:  10.1364/OE.5.000302
    [72] Demos S G, Alfano R R. Optical polarization imaging[J]. Applied Optics, 1997, 36(1/3): 150-155.
    [73] Demos S G, Radousky H B, Alfano R R. Subsurface imaging using the spectral polarization difference technique and NIR illumination[C]// Optical Tomography and Spectroscopy of Tissue Ⅲ. 1999: 406-410.
    [74] ZHAO Y, ZHANG L, PAN Q. Spectropolarimetric imaging for pathological analysis of skin[J]. Applied Optics, 2009, 48(10): D236-46. doi:  10.1364/AO.48.00D236
    [75] Frost J W, Nasr Ad Dine F, Rodriguez J, et al. A handheld polarimeter for aerosol remote sensing[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2005: 269-276.
  • 加载中
图(22)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  33
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-07
  • 修回日期:  2021-04-07
  • 刊出日期:  2021-09-20

目录

    /

    返回文章
    返回

    《红外技术》网站维护通知

    尊敬的专家、作者、读者:

    国庆假期期间(10月1日-3日)因设备维护,《红外技术》网站(hwjs.nvir.cn)将于2021年9月30日18:00-10月4日13:00关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    《红外技术》编辑部

    2021年9月29日