留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碲锌镉衬底表面处理研究

江先燕 丛树仁 宁卓 起文斌 刘燕 宋林伟 孔金丞

江先燕, 丛树仁, 宁卓, 起文斌, 刘燕, 宋林伟, 孔金丞. 碲锌镉衬底表面处理研究[J]. 红外技术, 2023, 45(11): 1242-1255.
引用本文: 江先燕, 丛树仁, 宁卓, 起文斌, 刘燕, 宋林伟, 孔金丞. 碲锌镉衬底表面处理研究[J]. 红外技术, 2023, 45(11): 1242-1255.
JIANG Xianyan, CONG Shuren, NING Zhuo, QI Wenbin, LIU Yan, SONG Linwei, KONG Jincheng. Surface Processing of Cadmium Zinc Telluride Substrates[J]. Infrared Technology , 2023, 45(11): 1242-1255.
Citation: JIANG Xianyan, CONG Shuren, NING Zhuo, QI Wenbin, LIU Yan, SONG Linwei, KONG Jincheng. Surface Processing of Cadmium Zinc Telluride Substrates[J]. Infrared Technology , 2023, 45(11): 1242-1255.

碲锌镉衬底表面处理研究

详细信息
    作者简介:

    江先燕(1993-),女,博士,主要从事红外材料与器件方面的研究,E-mail:jxy0709_kmwlyjs@163.cm

    通讯作者:

    丛树仁(1978-),男,博士,主要从事红外材料与器件方面的研究,E-mail: congshuren@126.com

  • 中图分类号: TN213

Surface Processing of Cadmium Zinc Telluride Substrates

  • 摘要: 主要从碲锌镉表面处理工艺及表面位错缺陷揭示两个方面对碲锌镉衬底的表面处理研究进行了详细介绍。从表面处理机理和工艺参数对衬底表面的影响两个方面介绍了机械研磨、机械抛光、化学机械抛光以及化学抛光4种表面处理工艺。同时,介绍了能揭示碲锌镉不同晶向表面的位错缺陷的Everson、Nakagawa及EAg三种化学腐蚀液。
  • 图  1  机械研磨装置及研磨机理示意图

    Figure  1.  Schematic diagram of mechanical grinding device and grinding mechanism

    图  2  磨料种类及磨料粒径与表面粗糙度和材料去除速率的关系[8]

    Figure  2.  The relationship between abrasive type, size and surface roughness and material removal rate [8]

    图  3  不规则磨料及规则磨料的扫描电镜图

    Figure  3.  Scanning electron microscopy images of abrasives with irregular and regular shape

    图  4  不规则磨料及板片状磨料去除机理示意图[23]

    Figure  4.  Schematic diagram of removal mechanism of abrasives with irregular shape and plate-like abrasives

    图  5  磨盘示意图

    Figure  5.  Schematic diagram of grinding disc

    图  6  机械抛光装置及抛光原理示意图

    Figure  6.  Schematic diagram of mechanical polishing device and polishing mechanism

    图  7  不同厂家生产的同种抛光液的机械抛光表面

    Figure  7.  Surface states after mechanical polishing with the same polishing slurry produced by different manufacturers

    图  8  不同粒径的抛料抛光后的CZT平均表面粗糙度[27]

    Figure  8.  Average surface roughness of CZT crystal after different types of polishing[27]

    图  9  抛光垫表面纹理图[29]

    Figure  9.  Polishing pad surface texture[29]

    图  10  化学机械抛光工艺后碲锌镉晶片的表面粗糙度

    Figure  10.  Surface roughness of CZT after chemical mechanical polishing process

    图  11  CZT衬底表面PV值和表面粗糙度随NaClO浓度的变化关系[32]

    Figure  11.  Surface PV value and surface roughness of CZT substrates as a function of NaClO concentation[32]

    图  12  CZT经多线切割、机械研磨及化学机械抛光后的表面光学图和化学机械抛光后的表面粗糙度及形貌图[35]

    Figure  12.  Optical images of CZT after multi-wire sawing, mechanical grinding and chemical mechanical polishing, and surface roughness and morphology after chemical mechanical polishing[35]

    图  13  化学抛光装置及抛光原理示意图

    Figure  13.  Schematic diagram of chemical polishing device and polishing mechanism

    图  14  不同溴浓度下碲锌镉衬底去除量与表面粗糙度的关系[40]

    Figure  14.  Correlation between the surface roughness and stock removal of CdZnTe substrates for several concentrations of bromine[40]

    图  15  材料去除速率与I2浓度的关系及化抛后样品表面粗糙度(10wt% I2[42]

    Figure  15.  Correlation between material removal rate and I2 concentration, and surface roughness of samples after chemical polishing

    图  16  样品反复抛光和腐蚀后得到腐蚀坑轨迹示意图及两个腐蚀阶段的腐蚀坑光学图[48]

    Figure  16.  Traces of etch pits down from a specimen surface in a successive polishing and etching experiment, and optical micrographs of an etch-pit array observed in two etching stages are shown on the right

    图  17  腐蚀坑TEM图和(111)A面与B面的腐蚀坑密度对比[49]

    Figure  17.  TEM image of pits and bar graph comparing EPDs on A and B faces of (111)

    图  18  腐蚀坑形貌图[49]

    Figure  18.  Morphology of pits formed on (111)B and (211)B

    图  19  CdTe不同晶面腐蚀坑形貌图:(a) (100)晶面-EAg-1;(b) (110)晶面-EAg-1;(c) (111)晶面-EAg-1;(d) ($ \bar 1\bar 1\bar 1 $)晶面-EAg-1;(e) (111)晶面-EAg-2[52]

    Figure  19.  Morphology of pits formed on different CdTe planes, (a) (100)- EAg-1, (b) (110)- EAg-1, (c) (111)- EAg-1, (d) ($ \bar 1\bar 1\bar 1 $)- EAg-1 and (e) (111)- EAg-2[52]

    表  1  碲锌镉(Cd0.96Zn0.04Te)与单晶硅(Si)的基本物理性质对比

    Table  1.   Comparison of physical properties between cadmium zinc telluride (Cd0.96Zn0.04Te) and monocrystalline silicon (Si)

    Parameters CdZnTe Si
    Lattice constants a/(Å) 6.485(300 K) 5.43(300 K)
    Equilibrium segregation coefficient 1.35 -
    Expansion coefficient β/(K-1) 4.96×10-6(300 K) 2.6×10-6(300 K)
    Elastic modulus E/(MPa) 7.17×104 1.31×105
    Thermal conductivity κ/(W·cm-1·K-1) 0.01(300 K) 1.5(300 K)
    Thermal diffusivity Dθ/(mm2·s-1) 6.0×10-7(300 K) 90.0
    Poisson’s ratio 0.16 0.28
    Density ρ/(g·cm-3) 5.68 2.33
    下载: 导出CSV

    表  2  开槽和不开槽研磨盘对晶片研磨效果的影响

    Table  2.   Influence of slotted and non-slotted grinding discs on wafer grinding efficiency

    Factors Slotted non-slotted
    *Material removal
    rate/(μm/min)
    3-4(< 3 in) 5-8(< 3 in)
    3-4(≥3 in) 1-2(≥3 in)
    Total thickness variation similar similar
    Number of surface scratches high low
    Processable wafer size ≥3 in < 3 in
    注:*表示该数据是本单位实际测试数据。
    Note: *The data tested in this work.
    下载: 导出CSV

    表  3  不同表面处理后的(211)B CdZnTe样品的XPS测试结果[42]

    Table  3.   Results of XPS evaluation for (211)B CdZnTe samples for different surface treatments[42]

    Surface treatment Te overall/
    (Cd + Zn)
    atomic ratio
    Te oxide/
    Te elemental
    atomic ratio
    I2-methanol 1.8 1.4
    Annealed 330℃/1 min 1.0 0.7
    Annealed 330℃/10 min 1.0 0.6
    Annealed 350℃/10 min 1.0 0.5
    Br2-methanol 2.2 2.1
    Annealed 330℃/1 min 1.6 1.3
    下载: 导出CSV

    表  4  两种腐蚀液得到的CdTe单晶EPDs对比[49]

    Table  4.   Comparison of EPDs tested by two corrosion solutions[49]

    Nakagawa Everson
    (111)A 44×104 cm-2 N/A
    (111)B N/A 35×104 cm-2
    (211)A N/A N/A
    (211)B N/A 20×104 cm-2
    下载: 导出CSV
  • [1] 陈家骏, 邹凯, 徐由兵, 等. 直拉单晶硅生长过程中的控氧技术研究及标准[J]. 中国标准化, 2017(4): 242-243. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGBZ201704199.htm

    CHEN Jiajun, ZOU Kai, XU Youbing, et al. Research and standards on oxygen control technology during the growth process of Czochralski monocrystalline silicon[J]. China Standardization, 2017(4): 242-243. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGBZ201704199.htm
    [2] 程愉悻. 单晶硅生长技术的发展分析[J]. 科技创新与应用, 2015(31): 47. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201531031.htm

    CHENG Yuxing. Development analysis of single crystal silicon growth technology[J]. Technology Innovation and Application, 2015(31): 47. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201531031.htm
    [3] 郭亚葳. 大尺寸区熔单晶硅生长过程的数值模拟[D]. 北京: 北京有色金属研究总院, 2021.

    GUO Yawei. Numerical Simulation of the Growth Process of Large Diameter Silicon Single Crystal by The Floating Zone Melting Method[D], Beijing: General Research Institute for nonferrous Metals, 2021.
    [4] 年夫雪. 单晶硅直拉法生长工艺的数值模拟[D]. 上海: 上海大学, 2017.

    NIAN Fuxue. Numerical Simulation of Czochralski Single Silicon Crystal Growth Process[D]. Shanghai: Shanghai University, 2017.
    [5] 杨翠. 直拉单晶硅生长过程中固液界面形状研究[J]. 内蒙古石油化工, 2017, 43(10): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201710005.htm

    YANG Cui. Study on the shape between solid-liquid boundary surface in growth process of Czochralski monocrystalline silicon[J]. Inner Mongolia Petrochemical Industry, 2017, 43(10): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201710005.htm
    [6] 张怡. 直拉单晶硅生长和工艺研究[J]. 企业导报, 2015(22): 2. https://www.cnki.com.cn/Article/CJFDTOTAL-QYDB201522043.htm

    ZHANG Yi. Research on growth and process of Czochralski single crystal silicon[J]. Guide to Business, 2015(22): 2. https://www.cnki.com.cn/Article/CJFDTOTAL-QYDB201522043.htm
    [7] 侯保江, 安亚青, 水涌涛, 等. 单晶硅晶片化学机械抛光基本特性研究[J]. 兵器装备工程学报, 2019, 40(6): 163-166. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201906034.htm

    HOU Baojiang, AN Yaqing, SHUI Yongtao, et al. Research on the basic characteristics of chemical mechanical polishing of single crystal silicon wafers[J]. Journal of Ordnance Equipment Engineering, 2019, 40(6): 163-166. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201906034.htm
    [8] 李岩. 碲锌镉晶体研磨与磨削的试验研究[D]. 大连: 大连理工大学, 2008.

    LI Yan. Experimental Studies on Lapping and Grinding of CdZnTe Crystal[D]. Dalian: Dalian University of Technology, 2008.
    [9] 孟耀武. 软脆晶体碲锌镉超精密磨抛的试验研究[D]. 大连: 大连理工大学, 2010.

    MENG Yaowu. Experimental Investigations of Ultra-Precision Grinding and Polishing of Soft-Brittle Cadmium Zinc Telluride Single Crystals[D]. Dalian: Dalian University of Technology, 2010.
    [10] 孙士文. 碲锌镉单晶生长与晶体质量研究[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2014.

    SUN Shiwen. Growth and Characterization of CdZnTe Single Crystals[D]. Shanghai: University of Chinese Academy of Science (Shanghai Institute of Technical Physics), 2014.
    [11] 王可. 碲锌镉晶体基片抛光工艺的实验研究[D]. 大连: 大连理工大学, 2008.

    WANG Ke. An Experimental Study of the Polishing Process for CZT Crystal[D]. Dalian: Dalian University of Technology, 2008.
    [12] 徐超. 碲锌镉晶体缺陷的物理性能和抑制技术的研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2018.

    XU Chao. Study on Physical Properties and Suppression Techniques of CdZnTe Defects[D]. Shanghai: University of Chinese Academy of Science (Shanghai Institute of Technical Physics), 2018.
    [13] 周昌鹤. 碲锌镉材料缺陷评价技术及VGF生长技术的研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2021.

    ZHOU Changhe. Study on Defect Evaluation and VGF Growth Technique of CdZnTe Materials[D]. Shanghai: University of Chinese Academy of Science (Shanghai Institute of Technical Physics), 2021.
    [14] Capper P. Bulk crystal growth of electronic, optical and optoelectronic materials[M]. New Jersey: John Wiley & Sons In., 2005.
    [15] 孙士文, 周昌鹤, 徐超, 等. 碲锌镉衬底研究进展[C]//2015年红外、遥感技术与应用研讨会暨交叉学科论坛论文集, 2015: 82-90.

    SUN Shiwen, ZHOU Changhe, XU Chao, et al. Research progress in tellurium zinc cadmium substrate[C]//Proceedings of the 2015 Symposium on Infrared and Remote Sensing Technology and Applications, 2015: 82-90.
    [16] Capper P, Garland J. Mercury Cadmium Telluride (growth, properties and applications)[M]. New Jersey: John Wiley & Sons Inc, 2010.
    [17] Benson J D, Bubulac L O, Jaime Vasquez M, et al. Impact of CdZnTe substrates on MBE HgCdTe deposition[J]. Journal of Electronic Materials, 2017, 46(9): 5418-5423. doi:  10.1007/s11664-017-5599-1
    [18] Asici B, Eroglu H C, Ergunt Y, et al. CdZnTe substrate surface preparation technology at ASELSAN, Inc. for molecular beam epitaxy growth of high quality HgCdTe epilayers[J]. Journal of Electronic Materials, 2018, 47(10): 5735-5741. doi:  10.1007/s11664-018-6390-7
    [19] Singh R, Velicu S, Crocco J, et al. Molecular beam epitaxy growth of high-quality HgCdTe LWIR layers on polished and repolished CdZnTe substrates[J]. Journal of Electronic Materials, 2005, 34(6): 885-890. doi:  10.1007/s11664-005-0037-1
    [20] 程雨, 李春领, 肖钰. 碲锌镉晶体表面磨抛方法研究[J]. 红外, 2018, 39(11): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201811003.htm

    CHENG Yu, LI Chunling, XIAO Yu. Study of surface lapping and polishing methods of cadmium zinc telluride[J]. Infrared, 2018, 39(11): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201811003.htm
    [21] 郜培丽. 新型磨粒的制备及其在CZT晶体CMP加工中的应用研究[D]. 大连: 大连理工大学, 2021.

    GAO Peili. Preparation of Novel Abrasives and Their Applications in Chemical Mechanical Polishing for Cadmium Zinc Telluride Substrates[D]. Dalian: Dalian University of Technology, 2021.
    [22] 彭兰, 王林军, 闵嘉华, 等. 碲锌镉晶片机械研磨和机械抛光工艺研究[J]. 功能材料, 2011, 42(5): 880-887. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201105029.htm

    PENG Lan, WANG Linjun, MIN Jiahua, et al. Investigation on the mechanical lapping and polishing of CdZnTe wafers[J]. Journal of Functional Materials, 2011, 42(5): 880-887. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201105029.htm
    [23] 毛晓辰, 朱丽慧, 虞慧娴, 等. 板片状Al2O3磨料对碲锌镉晶体机械研磨的影响[J]. 人工晶体学报, 2018, 47(2): 261-266. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT201802005.htm

    MAO Xiaochen, ZHU Lihui, YU Huixian, et ai. Effect of plate-like Al2O3 abrasives on mechanical lapping of CdZnTe crystals[J]. Journal of Synthetic Crystals, 2018, 47(2): 261-266. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT201802005.htm
    [24] Crocco J, ZHENG Q, Bensalah H, et al. Detector surface preparation of Cd0.9Zn0.1Te for electrode patterning[J]. Applied Surface Science, 2012, 258(7): 2948-2952. doi:  10.1016/j.apsusc.2011.11.014
    [25] 苑泽伟. 利用化学和机械协同作用的CVD金刚石抛光机理与技术[D]. 大连: 大连理工大学, 2012.

    YUAN Zewei. Mechanism and Technology for Polishing CVD Diamond with Chemical and Mechanical Synergistic Effects[D]. Dalian: Dalian University of Technology, 2012.
    [26] 高梅. 超精密平面研磨加工压力对精度的影响[J]. 机床与液压, 2008, 36(3): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY200803007.htm

    GAO Mei. Effect of process pressure on accuracy in ultra-pricision plane grinding[J]. Machine Tool & Hydraulics, 2008, 36(3): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY200803007.htm
    [27] Brovko A, Adelberg A, Chernyak L, et al. Impact of polishing on crystallinity and static performance of Cd1−xZnxTe[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 984: 164568. doi:  10.1016/j.nima.2020.164568
    [28] 魏昕, 熊伟, 黄蕊慰, 等. 化学机械抛光中抛光垫的研究[J]. 金刚石与磨料磨具工程, 2004(5): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM201202019.htm

    WEI Xin, XIONG Wei, HUANG Ruiwei, et al. Study on the performance of polishing pad in chemical-mechanical polishing[J]. Diamond & Abrasives Engineering, 2004(5): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM201202019.htm
    [29] 曹威, 邓朝晖, 李重阳, 等. 化学机械抛光垫的研究进展[J]. 表面技术, 2022, 51(7): 27-41. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202207003.htm

    CAO Wei, DENG Zhaohui, LI Chongyang, et al. Polishing pad in chemical mechanical polishing[J]. Surface Technology, 2022, 51(7): 27-41. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202207003.htm
    [30] Pelenc D, Merlin J, Etcheberry A, et al. Development of a method for chemical-mechanical preparation of the surface of CdZnTe substrates for HgCdTe-based infrared focal-plane arrays[J]. Journal of Electronic Materials, 2014, 43(8): 3004-3011.
    [31] 李岩, 康仁科, 高航, 等. 碲锌镉晶体高效低损伤CMP工艺研究[J]. 人工晶体学报, 2009, 38(2): 416-421. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT200902031.htm

    LI Yan, KANG Renke, GAO Hang, et al. High-efficiency and low-damage chemical mechanical polishing process of CdZnTe crystals[J]. Journal of Synthetic Crystals, 2009, 38(2): 416-421. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT200902031.htm
    [32] 敖孟寒, 朱丽慧, 孙士文. 碲锌镉晶体化学机械抛光液的研究[J]. 红外技术, 2017, 39(1): 22-26. http://hwjs.nvir.cn/article/id/hwjs201701004

    AO Menghan, ZHU Lihui, SUN Shiwen. Research on chemical-mechanical polishing slurry for CdZnTe crystal[J]. Infrared Technology, 2017, 39(1): 22-26. http://hwjs.nvir.cn/article/id/hwjs201701004
    [33] 刘瑞鸿. 二氧化硅介质层CMP抛光液研制及其性能研究[D]. 大连: 大连理工大学, 2009.

    LIU Ruihong. Development of SiO2 ILD chemical mechanical polishing slurry and its performance analysis[D]. Dalian: Dalian University of Technology, 2009.
    [34] 张振宇, 郭东明, 康仁科, 等. 软脆功能晶体碲锌镉化学机械抛光[J]. 机械工程学报, 2008, 44(12): 215-220. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200812036.htm

    ZHANG Zhenyu, GUO Dongming, KANG Renke, et al. Chemical mechanical polishing research of CdZnTe functional crystalline with soft brittle nature[J]. Journal of Mechanical Engineering, 2008, 44(12): 215-220. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200812036.htm
    [35] ZHANG Z, WANG B, ZHOU P, et al. A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers[J]. Scientific Reports, 2016(6): 26891.
    [36] 敖孟寒, 朱丽慧, 孙士文, 等. CZT晶体用化学机械抛光液的制备及其性能研究[J]. 红外, 2015, 36(5): 8-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201505002.htm

    AO Menghan, ZHU Lihui, SUN Shiwen, et al. Research on chemical-mechanical planarization slurry of CdZnTe[J]. Infrared, 2015, 36(5): 8-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201505002.htm
    [37] Hossain A, Bolotnikov A E, Camarda G S, et al. Novel approach to surface processing for improving the efficiency of CdZnTe detectors[J]. Journal of Electronic Materials, 2013, 43(8): 2771-2777.
    [38] James Ralph B, Gnatyuk V A, Vlasenko O I, et al. Surface processing of CdZnTe crystals[C]//Proceeding of SPIE, 2012, 8507: 85071S.
    [39] ZHENG Q, Dierre F, Crocco J, et al. Influence of surface preparation on CdZnTe nuclear radiation detectors[J]. Applied Surface Science, 2011, 257(20): 8742-8746.
    [40] Moravec P, Höschl P, Franc J, et al. Chemical polishing of CdZnTe substrates fabricated from crystals grown by the vertical-gradient freezing method[J]. Journal of Electronic Materials, 2006, 35: 1206-1213.
    [41] WANG Xiaoqin, JIE Wanqi, LI Qiang, et al. Surface passivation of CdZnTe wafers[J]. Materials Science in Semiconductor Processing, 2005, 8(6): 615-621.
    [42] Ivanits'ka V G, Moravec P, Franc J, et al. Chemical polishing of CdTe and CdZnTe in iodine-methanol etching solutions[J]. Journal of Electronic Materials, 2011, 40(8): 1802-1808.
    [43] 侯晓敏, 张瑛侠, 巩锋. 软脆碲锌镉衬底的新型化学抛光技术研究[J]. 激光与红外, 2018, 48(10): 1264-1267. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201810013.htm

    HOU Xiaomin, ZHANG Yingxia, GONG Feng. Study of new chemical polishing technology for soft-brittle CdZnTe substrates[J]. Laser & Infrared, 2018, 48(10): 1264-1267. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201810013.htm
    [44] 张银霞, 郜伟, 康仁科, 等. 单晶硅片磨削损伤的透射电子显微分析[J]. 半导体学报, 2008, 29(8): 1552-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTX200808027.htm

    ZHANG Yinxia, GAO Wei, KANG Renke, et al. TEM observation on the ground damage of monocrystalline silicon wafers[J]. Journal of Semiconductors, 2008, 29(8): 1552-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTX200808027.htm
    [45] Puttick K E, Whitmore L C, CHAO C L, et al. Transmission electron microscopy of nanomachined silicon crystals[J]. Philosophical Magazine, 1994, 69(1): 91-103.
    [46] Shibata Takayuki, Ono Atsushi. Cross-section transmission electron microscope observations of diamond-turned single-crystal Si[J]. Applied Physics Letters, 1994, 65(20): 2553-2553.
    [47] LI Yan, KANG Renke, GAO Hang, et al. Damage mechanisms during lapping and mechanical polishing CdZnTe wafers[J]. Rare Metals, 2010, 29(3): 276-279.
    [48] Nakagawa K, Maeda K, Takeuchi S. Observation of dislocations in cadmium telluride by cathodoluminescence microscopy[J]. Applied Physics Letters, 1979, 34(9): 574-575.
    [49] Everson W J, Ard C K, Sepich J L, et al. Etch pit characterization of CdTe and CdZnTe substrates for use in mercury cadmium telluride epitaxy[J]. Journal of Electronic Materials, 1995, 24(5): 505-510.
    [50] Teague Lucile C, Duff Martine C, Cadieux James R, et al. Characterization of etch pit formation via the everson-etching method on CdZnTe crystal surfaces from the bulk to the nanoscale[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 652(1): 178-182.
    [51] 周昌鹤, 杨建荣, 周梅华, 等. (112)B碲锌镉衬底表面Everson腐蚀坑与材料缺陷的关系[J]. 红外与毫米波学报, 2021, 40(4): 432-438. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202104003.htm

    ZHOU Changhe, YANG Jiangrong, ZHOU Meihua, et al. Correlation between everson etch pits and material defects of (112)B CdZnTe substrates[J]. Journal of Infrared and Millimeter Waves, 2021, 40(4): 432-438. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202104003.htm
    [52] Inoue Morio, Teramoto Iwao, Takayanagi Shigetoshi. Etch pits and polarity in CdTe crystals[J]. Journal of Applied Physics, 1962, 33(8): 2578-2582.
    [53] 郎艳菊. CZT晶体加工表面/亚表面损伤研究[D]. 大连: 大连理工大学, 2008.

    LANG Yanju. Surface/subsurface Damage of the Machined CZT Crystal[D]. Dalian: Dalian University of Technology, 2008.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  85
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-24
  • 修回日期:  2023-02-21
  • 刊出日期:  2023-11-20

目录

    /

    返回文章
    返回