留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InAs/GaSb Ⅱ类超晶格长波红外探测器研究进展

田亚芳 史衍丽 李方江

田亚芳, 史衍丽, 李方江. InAs/GaSb Ⅱ类超晶格长波红外探测器研究进展[J]. 红外技术, 2023, 45(8): 799-807.
引用本文: 田亚芳, 史衍丽, 李方江. InAs/GaSb Ⅱ类超晶格长波红外探测器研究进展[J]. 红外技术, 2023, 45(8): 799-807.
TIAN Yafang, SHI Yanli, LI Fangjiang. Research Progress of InAs/GaSb Type-Ⅱ Superlattice Long-wave Infrared Detector[J]. Infrared Technology , 2023, 45(8): 799-807.
Citation: TIAN Yafang, SHI Yanli, LI Fangjiang. Research Progress of InAs/GaSb Type-Ⅱ Superlattice Long-wave Infrared Detector[J]. Infrared Technology , 2023, 45(8): 799-807.

InAs/GaSb Ⅱ类超晶格长波红外探测器研究进展

基金项目: 

云南贵金属实验室科技计划项目 YPML-2022050220

详细信息
    作者简介:

    田亚芳(1978-),女,湖北赤壁人,实验师,研究方向为半导体光电材料与器件。E-mail:xntyf@sohu.com

    通讯作者:

    史衍丽(1969-),女,山东郓城人,研究员,博导,研究方向为半导体光电器件物理与器件研究。E-mail:ylshikm@hotmail.com

  • 中图分类号: TN213

Research Progress of InAs/GaSb Type-Ⅱ Superlattice Long-wave Infrared Detector

  • 摘要: 本文系统报道了基于InAs/GaSb Ⅱ类超晶格(T2SLs)的长波红外探测器的研究进展。从衬底、材料生长以及器件性能角度对比分析了基于GaSb、InAs衬底的各种器件结构的优缺点。分析结果表明,以InAs为衬底、吸收区材料为InAs/InAs1-xSbx、PB1IB2N型的结构为相对优化的器件结构设计,结合ZnS和Ge的多层膜结构设计或者重掺杂缓冲层,同时采用电感耦合等离子体(inductively coupled plasma)干法刻蚀工艺,该器件的50%截止波长可达12 μm,量子效率(quantum efficiency)可提升到65%以上,暗电流密度降低至1×10-5 A/cm2。并归纳总结了InAs/GaSb T2SLs长波红外探测器未来的发展趋势。
  • 图  1  基于GaSb的PIN结构器件示意图

    Figure  1.  Schematic diagram of the PIN structure GaSb-based device

    图  2  基于GaSb的PB1IB2N结构的器件示意图及其能带结构图

    Figure  2.  Schematic diagram of the PB1IB2N structure GaSb-based device and its energy band structure alignment

    图  3  基于GaSb的NBN结构器件示意图

    Figure  3.  Schematic diagram of the NBN structure GaSb-based device

    图  4  具有NBN结构的探测器工作原理及能带结构示意图[16]:(a) NBN结构的探测器工作原理示意图;(b) NBN结构的探测器能带结构及有效带隙图

    Figure  4.  The energy band structure alignment and schematic diagram of working principle of the NBN detector[16]: (a) Schematic diagram of working principle for the NBN detector; (b) The band alignment and the creation of an effective band-gap for the NBN detector

    图  5  基于InAs的PIN结构的器件示意图及其能带结构图

    Figure  5.  Schematic diagram of the PIN structure InAs-based device and its energy band structure alignment

    图  6  基于InAs的N-on-P极性结构器件示意图

    Figure  6.  Schematic diagram of an N-on-P polar structure InAs-based device

    图  7  高掺杂缓冲层的PBIBN结构器件示意图

    Figure  7.  Schematic diagram of a the PBIBN structure device with a highly doped buffer layer

    图  8  多层薄膜结构的器件模型:(a) 3D结构示意图;(b) 背入射的中心截面图[32]

    Figure  8.  The multilayer coatings structure of the device model: (a) 3D structure diagram; (b) Back incident center cross-section[32]

    表  1  不同结构的GaSb/InAs探测器性能参数对比

    Table  1.   Comparison of detector performance parameters of different structures

    GaSb-substrate InAs-substrate
    Structure PIN PB1IB2N NBN PIN PB1IB2N
    Absorption layer material InAs/GaSb InAs/GaSb InAs/InAsSb InAs/InAsSb InAs/InAsSb
    Absorption layer parameter 13/7, 2.5 μm 15/7, 2.5 μm 28/7, 4 μm 20/9, 2.5 μm 22/9, 3.55 μm
    λc/μm 8 12.5 10 10 12.0
    JD/(A/cm2) 4.3×10-5 1.1×10-3 4.4×10-4 4.01×10-5 1.7×10-5
    R0A/Ωcm2 - 14.5 119 36.9 1.5×103
    QE <15% 30% 54% 45% >60%
    D*/(cm·Hz1/2·W−1) - 1.4×1011 2.8×1011 7.4×1010 -
    下载: 导出CSV
  • [1] Nguyen B M, Hoffman D, WEI Y, et al. Very high quantum efficiency in type-Ⅱ InAs/GaSb superlattice photodiode with cutoff of 12 μm [J]. Applied Physics Letters, 2007, 90(23): 231108. doi:  10.1063/1.2746943
    [2] Nguyen B M, Bogdanov S, Pour S A, et al. Minority electron unipolar photodetectors based on type Ⅱ InAs/GaSb/AlSb superlattices for very long wavelength infrared detection[J]. Applied Physics Letters, 2009, 95(18): 183502. doi:  10.1063/1.3258489
    [3] LI Xiaochao, JIANG Dongwei, ZHANG Yong, et al. Investigations of quantum efficiency in type-Ⅱ InAs/GaSb very long wavelength infrared superlattice detectors[J]. Superlattices and Microstructures, 2016, 92: 330-336. doi:  10.1016/j.spmi.2016.02.041
    [4] Khoshakhlagh A, Höglund L, Ting D Z, et al. High performance long-wave type-Ⅱ superlattice infrared detectors[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2013, 31(3): 03C122.
    [5] Kim H S, Cellek O O, LIN Z Y, et al. Long-wave infrared nBn photodetectors based on InAs/InAsSb type-Ⅱ superlattices[J]. Applied Physics Letters, 2012, 101(16): 161114. doi:  10.1063/1.4760260
    [6] ZHAO Yu, TENG Yan, HAO Xiujun, et al. Optimization of long-wavelength InAs/GaSb superlattice photodiodes with Al-free barriers [J]. IEEE Photonics Technology Letters, 2019, 32(1): 19-22.
    [7] HAN Xi, XIANG Wei, HAO Hongyue, et al. Very long wavelength infrared focal plane arrays with 50% cutoff wavelength based on type-Ⅱ InAs/GaSb superlattice[J]. Chin. Phys. B, 2017, 26(1): 018505. doi:  10.1088/1674-1056/26/1/018505
    [8] Plis E, Khoshakhlagh A, Myers S, et al. Molecular beam epitaxy growth and characterization of type-Ⅱ InAs/GaSb strained layer superlattices for long-wave infrared detection[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2010, 28(3): C3G13-C3G18.
    [9] TENG Yan, ZHAO Yu, WU Qihua, et al. High-performance long-wavelength InAs/GaSb superlattice detectors grown by MOCVD [J]. IEEE Photonics Technology Letters, 2018, 31(2): 185-188.
    [10] TING D Z Y, Hill C J, Soibel A, et al. A high-performance long wavelength superlattice complementary barrier infrared detector[J]. Applied Physics Letters, 2009, 95(2): 023508. doi:  10.1063/1.3177333
    [11] Pierre-Yves Delaunay, Binh Minh Nguyen, Darin Hoffman, et al. 320×256 infrared focal plane array based on type Ⅱ InAs/GaSb superlattice with a 12 μm cutoff wavelength[C]//Proc. of SPIE, 2007, 6542: 654204-1.
    [12] WANG Fangfang, XU Zhicheng, BAI Zhizhong, et al. Fabrication of a 1024×1024 format long wavelength infrared focal plane array based on type-Ⅱ superlattice and barrier enhanced structure[J]. Infrared Physics and Technology, 2021, 115: 103700. doi:  10.1016/j.infrared.2021.103700
    [13] HUANG Min, CHEN Jianxin, XU Zhicheng, et al. InAs/GaAsSb Type-Ⅱ superlattice LWIR focal plane arrays detectors grown on InAs substrates[J]. IEEE Photonics Technology Letters, 2020, 32(8): 453-456. doi:  10.1109/LPT.2020.2973204
    [14] XU Zhicheng, CHEN Jianxin, WANG Fangfang, et al. High performance InAs/GaAsSb superlattice long wavelength infrared photo-detectors grown on InAs substrates[J]. Semiconductor Science and Technology, 2017, 32(5): 055011. doi:  10.1088/1361-6641/aa6377
    [15] Hoang A M, CHEN G, Chevallier R, et al. High performance photodiodes based on InAs/InAsSb type-Ⅱ superlattices for very long wavelength infrared detection[J]. Appl. Phys. Lett. , 2014, 104: 251105. doi:  10.1063/1.4884947
    [16] Haddadi A, CHEN G, Chevallier R, et al. InAs/InAs1−xSbx type-Ⅱ superlattices for high performance long wavelength infrared detection[J]. Appl. Phys. Lett. , 2014, 105: 121104. doi:  10.1063/1.4896271
    [17] Haddadi A, Dehzangi A, Chevallier R, et al. Bias-selectable nBn dual-band long-/very long-wavelength infrared photodetectors based on InAs/InAs1−xSbx/AlAs1−xSbx type-Ⅱ superlattices[J]. Scientific Reports, 2017, 7(1): 3379. doi:  10.1038/s41598-017-03238-2
    [18] XU Zhicheng, CHEN Jianxin, WANG Fangfang, et al. MBE growth and characterization of type-Ⅱ InAs/GaSb superlattices LWIR materials and photodetectors with barrier structures[J]. Journal of Crystal Growth, 2017, 477: 277-282. doi:  10.1016/j.jcrysgro.2017.03.041
    [19] HUANG Min, CHEN Jianxin, XU Jiajia, et al. ICP etching for InAs-based InAs/GaAsSb superlattice long wavelength infrared detectors[J]. Infrared Physics & Technology, 2018, 90: 110-114.
    [20] WANG Fangfang, CHEN Jianxin, XU Zhicheng, et al. Performance comparison between the InAs-based and GaSb-based type-Ⅱ superlattice photodiodes for long wavelength infrared detection[J]. Optics Express, 2017, 25(3): 1629-1635. doi:  10.1364/OE.25.001629
    [21] Kyrtsos A, Matsubara M, Bellotti E. Investigation of the band gaps and bowing parameter of InAs1−xSbx alloys using the modified Becke-Johnson potential[J]. Physical Review Materials, 2020, 4(1): 014603. doi:  10.1103/PhysRevMaterials.4.014603
    [22] 管飞. 固态电子与器件[DB/OL]. [2018-04-06]. http://www.doc88.com/p-8458470353567.html.

    GUAN Fei. Solid State Electronics and Devices [DB/OL]. [2018-04-06]. http://www.doc88.com/p-8458470353567.html.
    [23] Donetsky D, Svensson S, Vorobjev L E. Carrier lifetime measurements in short-period InAs/GaSb strained-layer superlattice structures[J]. Appl. Phys. Lett., 2009, 95(21): 212104. doi:  10.1063/1.3267103
    [24] Connelly B C, Metcalfe G D, SHEN H, et al. Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type Ⅱ superlattices using time-resolved photoluminescence[J]. Appl. Phys. Lett. , 2010, 97(25): 251117. doi:  10.1063/1.3529458
    [25] WANG Fangfang, CHEN Jianxin, XU Zhicheng, et al. InAs-based type-Ⅱ superlattice long wavelength photodetectors[C]//Proc. of SPIE, 2016, 9755: 975519.
    [26] WANG Fangfang, CHE Jianxin, XU Zhicheng, et al. InAs-based InAs/GaAsSb type-Ⅱ superlattices: growth and characterization[J]. Cryst. Growth, 2015, 416: 130-133. doi:  10.1016/j.jcrysgro.2015.01.036
    [27] HUANG Yong, XIONG Min, WU Qihua, et al. High-performance mid-wavelength InAs/GaSb super-lattice infrared detectors grown by production-scale metalorganic chemical vapor deposition[J]. IEEE J. Quantum Electron., 2017, 53(5): 1-5.
    [28] . MOCVD生长的长波InAs/GaSb超晶格红外探测器研究[D]. 北京: 中国科学技术大学, 2021.

    TENG Yan. Studies on Long-wavelength InAs/GaSb Superlattice Infrared Detectors Grown by MOCVD[D]. Beijing: University of Science and Technology of China, 2021.
    [29] LIU Jiafeng, TENG Yan, HAO Xiujun, et al. Long-wavelength InAs/GaSb superlattice detectors on InAs substrates with n-on-p polarity[J]. IEEE Journal of Quantum Electronics, 2020, 56(5): 1-6.
    [30] Swaminathan V, Reynolds Jr C L, Geva M. Zn diffusion behavior in InGaAsP/InP capped mesa buried heterostructures[J]. Applied Physics Letters, 1995, 66(20): 2685-2687. doi:  10.1063/1.113488
    [31] HUANG Min, CHEN Jianxin, ZHOU Yi, et al. Light-harvesting for high quantum efficiency in InAs-based InAs/GaAsSb type-Ⅱ superlattices long wavelength infrared photodetectors[J]. Applied Physics Letters, 2019, 114(14): 141102. doi:  10.1063/1.5086792
    [32] 史睿, 周建, 白治中, 等. 基于多层薄膜的长波红外InAs/GaSb Ⅱ类超晶格焦平面光响应调控研究[J]. 红外与毫米波学报, 2022, 41(1): 248-252. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202201028.htm

    SHI Rui, ZHOU Jian, BAI Zhizhong. Tuning the optical response of long-wavelength InAs/GaSb type-Ⅱ superlattices infrared focal plane arrays with multi-coatings[J]. J. Infrared Millim. Waves, 2022, 41(1): 248-252. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202201028.htm
    [33] WANG Liang, XU Zhicheng, XU Jiajia, et al. Fabrication and characterization of InAs/GaSb type-Ⅱ superlattice long-wavelength infrared detectors aiming high temperature sensitivity[J]. Journal of Lightwave Technology, 2020, 38(21): 6129-6134.
    [34] 史衍丽. 第三代红外探测器的发展与选择[J]. 红外技术, 2013, 35(1): 1-8. http://hwjs.nvir.cn/article/id/hwjs201301003

    SHI Yanli. Choice and development of the third-generation infrared detectors[J]. Infrared Technology, 2013, 35(1): 1-8. http://hwjs.nvir.cn/article/id/hwjs201301003
    [35] GIN A, WEI Y, BAE J, et al. Passivation of type Ⅱ InAs/GaSb superlattice photodiodes[J]. Thin Solid Films, 2004, 447: 489-492.
    [36] Papis-Polakowska E. Surface treatment of GaSb and related materials for the processing of mid-infrared semiconductor devices[J]. Electron Technology: Internet Journal, 2005, 37(4): 1-34.
    [37] HUANG Min, CHEN Jianxin, XU Jiajia, et al. ICP etching for InAs-based InAs/GaAsSb superlattice long wavelength infrared detectors[J]. Infrared Physics & Technology, 2018, 90: 110-114.
    [38] XU Jiajia, XU Zhicheng, BAI Zhizhong, et al. Effects of etching processes on surface dark current of long-wave infrared InAs/GaSb superlattice detectors[J]. Infrared Physics & Technology, 2020, 107: 103277.
    [39] 郝宏玥, 吴东海, 徐应强, 等. 高性能锑化物超晶格中红外探测器研究进展(特邀)[J]. 红外与激光工程, 2022, 51(3): 32-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202203002.htm

    HAO Hongyue, WU Donghai, XU Yingqiang, et al. Research progress of high performance Sb-based superlattice mid-wave infrared photodetector (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 32-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202203002.htm
    [40] 蒋洞微, 徐应强, 王国伟, 等. 基于锑化物二类超晶格的多色红外探测器研究进展[J]. 人工晶体学报, 2020, 49(12): 2211-2220. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT202012001.htm

    JIANG Dongwei, XU Yingqiang, WANG Guowei, et al. Research progress in antimonide-based type-Ⅱ superlattice multi-color infrared detectors[J]. Journal of Syntetic Crystals, 2020, 49(12): 2211-2220. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT202012001.htm
    [41] Arash D, Abbas H, Romain C, et al. NBN extended short-wavelength infrared focal plane array[J]. Optics Letters, 2018, 43(3): 591-594.
    [42] Rogalski A. Next decade in infrared detectors[C]//Proc. of SPIE, 2017, 10433: 104330L.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  216
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-05
  • 修回日期:  2023-08-07
  • 刊出日期:  2023-08-20

目录

    /

    返回文章
    返回