留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹成像技术研究进展及应用

周强国 黄志明

周强国, 黄志明. 太赫兹成像技术研究进展及应用[J]. 红外技术, 2022, 44(4): 328-342.
引用本文: 周强国, 黄志明. 太赫兹成像技术研究进展及应用[J]. 红外技术, 2022, 44(4): 328-342.
ZHOU Qiangguo, HUANG Zhiming. Review of Research and Application of Terahertz Imaging Technology[J]. Infrared Technology , 2022, 44(4): 328-342.
Citation: ZHOU Qiangguo, HUANG Zhiming. Review of Research and Application of Terahertz Imaging Technology[J]. Infrared Technology , 2022, 44(4): 328-342.

太赫兹成像技术研究进展及应用

基金项目: 

国家自然科学基金委员会重点项目 12134016

杰出青年基金 61625505

中国科学院,基础前沿科学研究计划 ZDBS-LY-JSC025

详细信息
    作者简介:

    周强国(1995-),男,硕士研究生,主要从事红外成像及太赫兹探测技术研究。Email:qgzhouhq@163.com

    通讯作者:

    黄志明(1971-),男,研究员,博士生导师,国家杰出青年基金获得者,主要从事红外与太赫兹相关领域研究。E-mail:zmhuang@mail.sitp.ac.cn

  • 中图分类号: O441.4

Review of Research and Application of Terahertz Imaging Technology

  • 摘要: 太赫兹波(terahertz waves)位于红外波段与微波波段之间,相比其他波段具有高透射性、低能量性、相干性、指纹光谱以及瞬态性等特点。随着太赫兹成像技术在空间通信、雷达探测、航天航空以及生物医疗等领域的广泛应用,已经表现出传统成像技术(如可见光、超声波和X射线成像)无法比拟的优势。本文首先对太赫兹时域光谱(THz-TDS)成像技术以及室温(非制冷)微测辐射热计太赫兹成像技术的发展现状进行介绍,再介绍太赫兹成像技术的典型应用,最后指出太赫兹成像技术在发展中存在的限制因素并给出合理的建议。
  • 图  1  太赫兹辐射产生方法(a) 光电导效应;(b)光整流效应;(c)空气等离子体效应

    Figure  1.  (a) Photo conductance effect; (b) Optical rectification effect; (c) Air plasma effect

    图  2  透射型太赫兹成像系统原理图[13]

    Figure  2.  Schematic diagram of transmission THz imaging system[13]

    图  3  利用透射型太赫兹成像系统对树叶进行扫描成像:(a) 新鲜树叶成像;(b) 48 h后的树叶成像[13]

    Figure  3.  The leaves were scanned and imaged using a transmissive THz imaging system: (a) Fresh leaves; (b) Leaves after 48 hours[13]

    图  4  太赫兹成像系统及样品的太赫兹图像:(a) 太赫兹脉冲焦线成像系统;(b) 金属孔阵列样品以及其在0.204 THz、0.407 THz、0.815 THz、1.600 THz处的太赫兹图像[20]

    Figure  4.  Terahertz imaging system and terahertz images of samples: (a) THz pulse focal imaging system; (b) THz images of metal hole array samples and samples at 0.204 THz, 0.407 THz, 0.815 THz, 1.600 THz[20]

    图  5  太赫兹实时焦平面成像系统[23]

    Figure  5.  THz real-time focal plane imaging system [23]

    图  6  太赫兹脉冲近场扫描成像系统[34]

    Figure  6.  THz pulse near-field scan imaging system[34]

    图  7  高空间分辨率的散射式THz-SNOMs系统:(a) 实验装置;(b) 系统原理图[41]

    Figure  7.  Scattering THz-SNOMs system with high spatial resolution: (a) Photos of experimental apparatus and (b) System principle[41]

    图  8  共焦扫描成像系统:(a) 透射式半共焦扫描成像系统;(b) 透射式共焦扫描成像系统[42-43]

    Figure  8.  Confocal scanning imaging system: (a) Transmission type semi-confocal scanning and (b) Confocal scanning imaging system[42-43]

    图  9  三维光谱层析实验装置及其成像结果:原理图(a)及实验结果(b)[64]

    Figure  9.  Three-dimensional spectrum chromatography system and its imaging results: (a) Schematic diagram and (b) Experimental results [64]

    图  10  改进型太赫兹脉冲焦平面成像系统[14]

    Figure  10.  Improvement of THz pulsed focal plane array imaging system[14]

    图  11  基于窄禁带半导体的太赫兹探测器原理图[86]

    Figure  11.  Schematic diagram of a THz detector based on narrow bandgap semiconductors[86]

    图  12  太赫兹SAR成像雷达系统[87]

    Figure  12.  THz SAR imaging radar system[87]

    图  13  新型太赫兹单像素成像技术:(a) 系统示意图;(b) 成像压缩;(c) 样品成像图[89]

    Figure  13.  Novel THz single-pixel imaging technology: (a) System schematic diagram; (b) Image compression ratio; (c) Sample image[89]

    图  14  双层微桥结构太赫兹探测示意图[93]

    Figure  14.  Schematic diagram of double-layer microbridge structure for terahertz detection[93]

    图  15  太赫兹成像技术在安全检查方面的应用:(a) 为中国电科38所研制太赫兹人体安检仪系统成像;(b) 为诺⋅格公司研制的太赫兹安检仪成像

    Figure  15.  The application of THz imaging technology in security inspection: (a) Imaging for the THz human security detector system developed by China Electric Power 38 Institute; (b) Imaging for the THz security detector developed by Northrop Grumman

    图  16  航天飞机缺陷处的太赫兹图像

    Figure  16.  THz image of space shuttle defect

    图  17  体内和体外肿瘤组织的太赫兹图像[103]

    Figure  17.  THz images of tumor tissue in vivo and in vitro[103]

    图  18  太赫兹成像技术在环境和天文领域的应用:环境监测(a)以及天文研究(b) [109]

    Figure  18.  The application in enviroment and astronomy field: of terahertz imaging technology: in environmental monitoring (a) and astronomical research (b)[109]

  • [1] 李继强, 沈韬, 孙淑红, 等. 太赫兹技术在太阳能电池领域的应用进展[J]. 应用物理, 2018, 8(5): 193-203.

    LI Jiqiang, SHEN Tao, SUN Shuhong, et al. The progress of the application of terahertz technology in solar cells[J]. Applied Physics, 2018, 8(5): 193-203.
    [2] 王春平, 屈惠明, 陈钱. 新型红外成像技术[J]. 光电子技术, 2007, 27(1): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJS200701011.htm

    WANG Chunping, QU Huiming, CHEN Qian. New infrared imaging technology[J]. Optoelectronic Technology, 2007, 27(1): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJS200701011.htm
    [3] 赵国忠. 太赫兹光谱和成像应用及展望[J]. 现代科学仪器, 2006(2): 36-40. doi:  10.3969/j.issn.1003-8892.2006.02.011

    ZHAO Guozhong. Application and outlook of THz spectroscopy and imaging[J]. Modern Scientific Instruments, 2006(2): 36-40. doi:  10.3969/j.issn.1003-8892.2006.02.011
    [4] 杨昆, 赵国忠, 梁承森, 等. 脉冲太赫兹波成像与连续波太赫兹成像特性的比较[J]. 中国激光, 2009, 36(11): 2853-2858. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200911014.htm

    YANG Kun, ZHAO Guozhong, LIANG Chengsen, et al. Comparison of the properties of pulse THz wave imaging with continuous-wave THz imaging[J]. Chinese Journal of Lasers, 2009, 36(11): 2853-2858. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200911014.htm
    [5] Auston D H, Smith P R. Generation and detection of millimeter wave by picosecond photoconductivity[J]. Applied Physics Letters, 1983, 43(7): 631–633. doi:  10.1063/1.94468
    [6] Fattinger C, Grischkowsky D. Terahertz Beams[J]. Applied Physics Letters., 1989, 54(6): 490-492. doi:  10.1063/1.100958
    [7] XU L, ZHANG X C, Auston D H. Terahertz beam generation by femtosecond optical pulses in the electro-optic materials[J]. Applied Physics Letters, 1992, 61(15): 1784-1786. doi:  10.1063/1.108426
    [8] HU B B, ZHANG X C, Auston D H. Free-space radiation from electro-optic crystals[J]. Applied Physics Letters, 1990, 56(6): 506-508. doi:  10.1063/1.103299
    [9] Wynne K, Carey J J. An integrated description of terahertz generation through optical rectification, charge transfer, and current surge[J]. Optics Communications, 2005, 256(4): 400-413.
    [10] Hamster H, Sullivan A, Gordon S, et al. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction[J]. Physical Review Letters, 1993, 71(17): 2725-2728. doi:  10.1103/PhysRevLett.71.2725
    [11] Hamster H, Sullivan A, Gordon S, et al. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas[J]. Physical Review E, 1994, 49(1): 671-677. doi:  10.1103/PhysRevE.49.671
    [12] XIE X, DAI J, ZHANG X C. Coherent control of THz wave generation in ambient air[J]. Physical Review Letters, 2006, 96(7): 075005 1-4.
    [13] HU B B, NUSS M C. Imaging with terahertz waves[J]. Optics Letters, 1995, 20(16): 1716. doi:  10.1364/OL.20.001716
    [14] 王新柯, 张岩. 太赫兹脉冲焦平面成像技术的发展与应用[J]. 光电工程, 2020, 47(5): 28-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202005004.htm

    WANG Xinke, ZHANG Yan. The development and application of THz pulse focal plane imaging technology[J]. Opto-Electronic Engineering, 2020, 47(5): 28-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202005004.htm
    [15] Johnson J L, Dorney T D, Mittleman D M. Enhanced depth resolution in terahertz imaging using phase-shift interferometry[J]. Applied Physics Letters, 2001, 78(6): 835-837. doi:  10.1063/1.1346626
    [16] Banerjee D, Spiegel W von, Thomson M D, et al. Diagnosing water content in paper by terahertz radiation[J]. Optics Express, 2008, 16(12): 9060-9066. doi:  10.1364/OE.16.009060
    [17] ZHANG X C. Recent progress of terahertz imaging technology[C]// Proc. of 2002 Conference on Optoelectronic and Microelectronic Materials and Devices, 2002: DOI: 10.1109/COMMAD.2002.1237176.
    [18] JIANG Z, XU X G, ZHANG X C. Improvement of terahertz imaging with a dynamic subtraction technique[J]. Applied Optics, 2000, 39(17): 2982-2987. doi:  10.1364/AO.39.002982
    [19] ZHONG H, Redo-Sanchez A, ZHANG X C. Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system[J]. Optics Express, 2006, 14(20): 9130-9141. doi:  10.1364/OE.14.009130
    [20] Yasui T, Sawanaka K, Ihara A, et al. Real-time terahertz color scanner for moving objects[J]. Optics Express, 2008, 16(2): 1208-1221. doi:  10.1364/OE.16.001208
    [21] Schirmer M, Fujio M, Minami M, et al. Biomedical applications of a real-time terahertz color scanner[J]. Biomedical optics express, 2010, 1(2): 354-366. doi:  10.1364/BOE.1.000354
    [22] Blanchard F, Doi A, Tanaka T, et al. Real-time terahertz near-field microscope[J]. Optics Express, 2011, 19(9): 8277-84. doi:  10.1364/OE.19.008277
    [23] ZHANG L L, Karpowicz, N, ZHANG C L, et al. Real-time non- destructive imaging with THz waves[J]. Optics Communications, 2008, 281(6): 1473-1475. doi:  10.1016/j.optcom.2007.11.063
    [24] 陈素果, 侯磊, 楼骁, 等. 太赫兹波脉冲成像和连续波成像技术研究[J]. 西安理工大学学报, 2013, 29(2): 127-132. doi:  10.3969/j.issn.1006-4710.2013.02.001

    CHEN Suguo, HOU Lei, LOU Xiao, et al. Investigation of terahertz continuous wave imaging and pulse wave imaging[J]. Journal of Xi'an University of Technology, 2013, 29(2): 127-132. doi:  10.3969/j.issn.1006-4710.2013.02.001
    [25] Sakamoto M, Hattori T. Deformation corrected real-time terahertz imaging[J]. Applied Physics Letters, 2007, 90(26): 261101-261106. doi:  10.1063/1.2751590
    [26] Yasuda T, Kawada Y, Toyoda H, et al. Terahertz movie of internal transmission imaging[J]. Optics Express, 2007, 15(23): 15583-15588. doi:  10.1364/OE.15.015583
    [27] Tait C R, Werley C A, Nelson K A, et al. Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO3[J]. Journal of the Optical Society of America, B. Optical Physics, 2010, 27(11): 2350-2359. doi:  10.1364/JOSAB.27.002350
    [28] 徐利兵. 电子学太赫兹技术研究概述[J]. 中国新通信, 2013, 15(22): 3-4. doi:  10.3969/j.issn.1673-4866.2013.22.003

    XU Libing. An overview of electronic terahertz technology research[J]. China New Communications, 2013, 15(22): 3-4. doi:  10.3969/j.issn.1673-4866.2013.22.003
    [29] Han S, Kim N, Lee W, et al. Real-time imaging of moving living objects using a compact terahertz scanner[J]. Applied Physics Express, 2016, 9(2): 022501. doi:  10.7567/APEX.9.022501
    [30] YANG J, RUAN Shuangchen, ZHANG MIN, et al. Real-time continuous -wave imaging with a 1.63 THz OPTL and a pyroelectric camera[J/OL]. Optoelectronics Letters, 2008, 4(DOI: https://DOI.org/10.1007/s11801-008-8036-0).
    [31] YAO R, LI Q, WANG Q, 1.63 THz transmission imaging experiment by use of a pyroelectric camera array[C]// Photonics and Optoelectronics Meetings POEM, 2008: 72770D-72771D.
    [32] YAO R, LI Q, DING S H, et al. Investigation on 2.45 THz array transmission imaging[C]//Proceedings of SPIE, 2009, 7385: 73850P.
    [33] 姚睿, 丁胜晖, 李琦, 等. 2.52 THz面阵透射成像系统改进及分辨率分析[J]. 中国激光, 2011, 38(1): 242-247. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201101050.htm

    YAO Rui, DING Shenghui, LI Qi, et al. Improvement of 2.52 THz array transmission imaging system and resolution analysis[J]. Chinese Journal of Lasers, 2011, 38(1): 242-247. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201101050.htm
    [34] Hunsche, S, Koch M, Brener I, et al. THz near-field imaging[J]. Optics Communications, 1998, 150(1-6): 22-26. doi:  10.1016/S0030-4018(98)00044-3
    [35] Huber A J, Keilmann F, Wittborn J, et al. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices[J]. Nano Letters, 2008, 8(11): 3766-3770. doi:  10.1021/nl802086x
    [36] Moon, K., Do, Y, Lim, M, et al., Quantitative coherent scattering spectra in apertureless terahertz pulse near-field microscopes[J]. Applied Physics Letters, 2012. 101(1): 011109-1-011109-4. doi:  10.1063/1.4733475
    [37] Dean P, Mitrofanov O, Keeley J, et al. Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser[J]. Applied Physics Letters, 2016, 108(9): 091113. doi:  10.1063/1.4943088
    [38] Kuschewski F, H G von Ribbeck, Doering J, et al. Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz[J]. Applied Physics Letters, 2016, 108(11): 113101-113102. doi:  10.1063/1.4943789
    [39] Degl Innocenti R, Wallis R, Wei B, et al. Terahertz nanoscopy of plasmonic resonances with a quantum cascade laser[J]. ACS Photonics, 2017, 4(9): 2150-2157. doi:  10.1021/acsphotonics.7b00687
    [40] Liewald C, Mastel S, Hesler J, et al. All-electronic terahertz nanoscopy[J]. Optica, 2018, 5(2): 159-163. doi:  10.1364/OPTICA.5.000159
    [41] 岳东东, 游冠军. 散射式太赫兹扫描近场光学显微技术研究[J]. 光学仪器, 2020, 42(2): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYQ202002011.htm

    YUE Dongdong, YOU Guanjun. Study on scattering-type terahertz scanning near-field optical microscopy[J]. Optical Instruments, 2020. 42(2): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYQ202002011.htm
    [42] Salhi M A, Koch M. Semi-confocal imaging with a THz gas laser[C]//Proc. of SPIE on Millimeter-Wave and Terahertz Photonics, 2006, 6194: 61940A(https://DOI.org/10.1117/12.662024).
    [43] Salhi M A, Koch M. Confocal THz imaging using a gas laser[C]//33rd International Conference on Infrared, Millimeter and Terahertz Waves, Pasaden: 2008: 1-2(DOI: 10.1109/ICIMW.2008.4665481).
    [44] Salhi M, Koch M. High resolution imaging using a THz gas laser [C/OL]//EOS Topical Meeting on Terahertz Science and Technology, 2008: https://igsm.tu-bs.de/publication/2008/high-resolution-imaging-using-thz-gas-laser.
    [45] Salhi M A, Pupeza I, Koch M. Confocal THz laser microscope[J]. Journal of Infrared Millimeter & Terahertz Waves, 2010, 31(3): 358-366.
    [46] Zinovev N. N., Andrianov A V, Gallant A J, et al. Contrast and resolution enhancement in a confocal terahertz video system[J]. JETP Letters, 2008, 88(8): 492-495. doi:  10.1134/S0021364008200058
    [47] LIM M, KIM J, HAN Y, et al. Perturbation analysis of terahertz confocal microscopy[C]//International Conference on Infrared, Millimeter and Terahertz Waves, 2008: 757-758.
    [48] R U Siciliani de Cumis, XU J H, Masini L, et al. Terahertz confocal microscopy with a quantum cascade laser source[C]//International Conference on Infrared, Millimeter and Terahertz Waves, 2012: 1-2.
    [49] Hwang Y, Ahn J, Mun J, et al. In vivo analysis of THz wave irradiation induced acute inflammatory response in skin by laser-scanning confocal microscopy[J]. Optics Express, 2014, 22(10): 11465-11475. doi:  10.1364/OE.22.011465
    [50] 张艳东. 连续太赫兹波成像技术的检测应用研究[D]. 北京: 首都师范大学, 2008.

    ZHANG Yandong. Research on the Detection and Application of Continuous Terahertz Wave Imaging Technology[D]. Beijing: Capital Normal University, 2008.
    [51] 丁胜晖, 李琦, 姚睿, 等. THz共焦扫描成像图像处理方法初步研究[C]//第九届全国光电技术学术交流会, 2010: 656-660.

    DING Shenghui, LI Qi, YAO Rui, et al. THz preliminary study on confocal scanning and imaging image processing method[C]//9th National Optoelectronics Technology Academic Exchange Association, 2010: 656-660.
    [52] 邸志刚, 姚建铨, 贾春荣, 等. 太赫兹成像技术在无损检测中的实验研究[J]. 激光与红外, 2011, 41(10): 1163-1166. doi:  10.3969/j.issn.1001-5078.2011.10.022

    DI Zhigang, YAO Jianquan, JIA Chunrong, et al. Experimental study on terahertz imaging technique in nondestructive inspection[J]. Laser & Infrared, 2011, 41(10): 1163-1166. doi:  10.3969/j.issn.1001-5078.2011.10.022
    [53] 黄亚雄, 姚建铨, 凌福日, 等. 基于相干层析的太赫兹成像技术研究[J]. 激光与红外, 2015, 45(10): 1261-1265. doi:  10.3969/j.issn.1001-5078.2015.10.023

    HUANG Yaxiong, YAO Jianquan, LING Furi, et al. Terahertz imaging technology based on coherent tomograph[J]. Laser and Infrared, 2015, 45(10): 1261-1265. doi:  10.3969/j.issn.1001-5078.2015.10.023
    [54] Dengler, R J, Cooper K B, Chattopadhyay G, et al. 600 GHz imaging radar with 2 cm range resolution[C]//International Microwave Symposium, 2007: (DOI: 10.1109/MWSYM.2007.380468).
    [55] Cooper, K B, Dengler R J, Llombart N, et al. THz imaging radar for standoff personnel screening[C]//IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 169-182.
    [56] Essen H, Wahlen A, Sommer R, et al. High-bandwidth 220 GHz experimental radar[J]. Electronics Letters, 2007, 43(20): 1114-1116. doi:  10.1049/el:20071865
    [57] 胡伟东, 张萌, 武华锋, 等. 频率步进太赫兹脉冲成像技术研究[J]. 强激光与粒子束, 2013, 25(6): 1605-1608. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201306058.htm

    HU Weidong, ZHANG Meng, WU Huafeng, et al. Research on step-frequency terahertz pulses imaging technology[J]. Strong Laser and Particle Beam, 2013, 25(6): 1605-1608. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201306058.htm
    [58] Sheen, D M, Mcmakin D, Barber J, et al. Active imaging at 350 GHz for security applications[C]//Proceedings of SPIE, 2008, 6948 (DOI: 10.1117/12.778011).
    [59] Sheen D M, Hall T E, Severtsen R H, et al. Standoff concealed weapon detection using a 350 GHz radar imaging system[C]//Proceedings of SPIE, 2010, 7670(1): 115-118(DOI: 10.1117/12.852788).
    [60] Spiegel W V, Weg C A, Henneberger R, et al. Active THz imaging system with improved frame rate[C]//Proceedings of SPIE, 2009, 7311: DOI: 10.1117/12.817925.
    [61] Quast H, Loffler T. 3D-terahertz-tomography for material inspection and security[C]//International Conference on Infrared, Millimeter, and Terahertz Waves, 2009: 513-514.
    [62] Brahm A, Kunz M, Riehemann S, et al. Volumetric spectral analysis of materials using terahertz-tomography techniques[J]. Applied Physics B, 2010, 100(1): 151-158. doi:  10.1007/s00340-010-3945-6
    [63] Brahm A, Wilms A, Tymoshchuk M, et al. Optical effects at projection measurements for Terahertz tomography[J]. Optics & Laser Technology, 2014, 62: 49-57.
    [64] Kato E, Nishina S, Irisawa A, et al. 3D spectroscopic computed tomography imaging using terahertz waves[C]//35th International Conference on Infrared, Millimeter, and Terahertz Waves, 2010: 1-2(DOI: 10.1109/ICIMW.2010.5612981).
    [65] Buma T, ZHANG Z. Adaptive image reconstruction for sparse arrays using single-cycle terahertz pulses[J]. Optics Letters, 2010, 35(10): 1680-1682. doi:  10.1364/OL.35.001680
    [66] Abraham E, Younus A, Aguerre C, et al. Refraction losses in terahertz computed tomography[J]. Optics Communications, 2010, 283(10): 2050-2055. doi:  10.1016/j.optcom.2010.01.013
    [67] 郑德伟. 连续太赫兹波层析成像实验研究[D]. 成都: 电子科技大学2011.

    ZHENG Dewei. Continuous Terahertz Wave Tomography Experimental Research, Chengdu: University of Electronic Technology, 2011.
    [68] Robertson D, Marsh P, Bolton D, et al. 340-GHz 3D radar imaging test bed with 10 Hz frame rate. Proceedings of SPIE, 2012, 8362: (DOI: 10.1117/12.918581).
    [69] 梁美彦, 邓朝, 张存林. 太赫兹雷达成像技术[J]. 太赫兹科学与电子信息学报, 2013, 11(2): 189-198. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201302007.htm

    LIANG Meiyan, DENG Chao, ZHANG Cunlin. THz radar imaging technology[J]. Teahertz Journal of Science and Electronic Information, 2013, 11(2): 189-198. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201302007.htm
    [70] Tripathi S R, Sugiyama Y, Murate K, et al. Terahertz wave three-dimensional computed tomography based on injection-seeded terahertz wave parametric emitter and detector[J]. Optics Express, 2016, 24(6): 6433. doi:  10.1364/OE.24.006433
    [71] ZHOU T, ZHANG R, YAO C, et al. Terahertz three-dimensional imaging based on computed tomography with photonics-based noise source[J]. Chinese Physics Letters, 2017, 34(8): 084206. doi:  10.1088/0256-307X/34/8/084206
    [72] WANG X, YE J, ZHANG Y, et al. Terahertz real-time imaging with balanced electro-optic detection[J]. Optics Communications, 2010, 283(23): 4626-4632. doi:  10.1016/j.optcom.2010.07.010
    [73] Hattori T, Ohta K, Rungsawang R, et al. Phase-sensitive high-speed THz imaging[J]. Journal of Physics D-Applied Physics, 2004, 37(5): 770-773. doi:  10.1088/0022-3727/37/5/020
    [74] Rungsawang R, Mochiduki A, Ookuma S, et al. 1-kHz real-time imaging using a half-cycle terahertz electromagnetic pulse[J]. Japanese Journal of Applied Physics, 2005, 44(8/11): L288-L291.
    [75] 王新柯. 太赫兹实时成像中关键技术的研究与改进[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    WANG Xinke, Research and Improvement of Key Technologies in THz Live Imaging[D]. Harbin: Harbin Institute of Technology, 2011.
    [76] Kitahara H, Tani M, Hangyo M. Two-dimensional electro-optic sampling of terahertz radiation using high-speed complementary metal-oxide semiconductor camera combined with arrayed polarizer[J]. Applied Physics Letters, 2009, 94(9): 91111-91119. doi:  10.1063/1.3094879
    [77] Wiegand C, Herrmann M, Bachtler S, et al. A pulsed THz imaging system with a line focus and a balanced 1-D detection scheme with two industrial CCD line-scan cameras[J]. Optics Express, 2010, 18(6): 5595. doi:  10.1364/OE.18.005595
    [78] Planken P C M, W A M van der Marel, N C J van der Valk. Terahertz polarization imaging[J]. Optics Letters, 2005, 30(20): 2802-2804. doi:  10.1364/OL.30.002802
    [79] Rutz F, Richter H, Ewert U, et al. Terahertz birefringence of liquid crystal polymers[J]. Applied Physics Letters, 2006, 89(22): 221911. doi:  10.1063/1.2397564
    [80] Jordens C, Maik S, Wichmann M, et al. Terahertz birefringence for orientation analysis[J]. Applied Optics, 2009, 48(11): 2037-2044. doi:  10.1364/AO.48.002037
    [81] ZHAO Y, ZHANG L, ZHANG C, et al. Terahertz polarization imaging with birefringent materials[J]. Optics Communications, 2010, 283(24): 4993-4995. doi:  10.1016/j.optcom.2010.08.014
    [82] Loffler T, Thilo M, CA W, et al. Continuous-wave terahertz imaging with a hybrid system[J]. Applied Physics Letters, 2007, 90(9): 91111. doi:  10.1063/1.2711183
    [83] Lee K, JIN K H, YE J C, et al. Coherent optical computing for terahertz imaging[C]//CLEO/QELS: 2010 Laser Science to Photonic Applications, 2010: 1-2.
    [84] YU N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities[J]. Science, 2011, 334(6054): 333-337. doi:  10.1126/science.1210713
    [85] Han R, ZHANG Y, Kim Y, et al. Terahertz image sensors using CMOS Schottky barrier diodes[C]//International SoC Design Conference, 2012: 254-257(DOI: 10.1109/ISOCC.2012.6407088).
    [86] HUANG Z M, ZHOU W, TONG J C, et al. Extreme sensitivity of room-temperature photoelectric effect for terahertz detection[J]. Advanced Materials, 2016, 28(1): 112-117. doi:  10.1002/adma.201503350
    [87] 吴福伟, 刘振华, 李大圣, 等. 220 GHz太赫兹合成孔径雷达[J]. 太赫兹科学与电子信息学报, 2017, 15(3): 368-371. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201703006.htm

    WU Fuwei, LIU Zhenhua, LI Dasheng, et al. A 220 GHz terahertz synthetic aperture radar[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(3): 368-371. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201703006.htm
    [88] LIU Z Y, LIU L Y, YAN J G, et al. A fully-integrated 860-GHz CMOS terahertz sensor[C]//Solid-state Circuits Conference, 2015: 1-4(DOI: 10.1109/ASSCC.2015.7387437).
    [89] SHE R, LIU W, LU Y, et al. Fourier single-pixel imaging in the terahertz regime[J]. Applied Physics Letters, 2019, 115(2): 21101. doi:  10.1063/1.5094728
    [90] 王军, 蒋亚东. 室温微测辐射热计太赫兹探测阵列技术研究进展(特邀)[J]. 红外与激光工程, 2019, 48(1): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201901005.htm

    WANG Jun, JIANG Yadong. Technical research progress in room temperature radiation technology (specially invited) [J]. Infrared and Laser Engineering, 2019, 48(1): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201901005.htm
    [91] Lee A. W., Hu Q. Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array[J]. Optics Letters, 2005, 30(19): 2563-2565. doi:  10.1364/OL.30.002563
    [92] Knyazev B A, Dem'Yanenko A A, Esaev D G. Terahertz imaging with a 160×120 pixel microbolometer 90-fps camera[J]. 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, 2007: 360-361.
    [93] Seiji Kurashina, Naoki Oda. Bolometer-type terahertz wave detector: US08618483B2[P]. [2013-12-31].
    [94] Pope T, Doucet M, Dupont F, et al. Uncooled detector, optics, and camera development for THz imaging[J]. Proceedings of the SPIE - The International Society for Optical Engineering, 2009, 7311: 73110L-73119L. doi:  10.1117/12.819923
    [95] Hosako I, Sekine N, Oda N, et al. A real-time terahertz imaging system consisting of terahertz quantum cascade laser and uncooled microbolometer array detector[C]//Conference on Terahertz Physics, Devices, and Systems V: Advanced Applications in Industry and Defense, 2011: 1-6.
    [96] Oulachgar H, Linda Marchese, Christine Alain, et al. Development of MEMS microbolometer detector for THz applications[C]//International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz 2010), 2010: 1-2(DOI: 10.1109/ICIMW.2010.5612408).
    [97] Oulachgar H, Bolduc M, Tremblay M, et al. Simulation and fabrication of large area uncooled microbolometers for Terahertz wave detection [C]//International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2011), 2011: 766-767.
    [98] Blanchard N, Marchese L, Martel A, et al. Catadioptric optics for high-resolution terahertz imager[C]//Conference on Terahertz Physics, Devices, and Systems Ⅵ: Advanced Applications in Industry and Defense, 2012: 1-9.
    [99] Duy-Thong N, Simoens F, Ouvrier-Buffet J, et al. Broadband THz uncooled antenna-coupled microbolometer array-electromagnetic design, simulations and measurements[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(3): 299-305. doi:  10.1109/TTHZ.2012.2188395
    [100] Marchese L, Doucet M, Blanchard N, et al. Overcoming the challenges of active THz/MM-wave imaging: an optics perspective[C/OL]//Proc. of SPIE on Micro- and Nanotechnology Sensors, Systems, and Applications X, 2018, 10639: 106392B(DOI: 10.1117/12.2305398).
    [101] 朱彬, 陈彦, 邓科, 等. 太赫兹科学技术及其应用[J]. 成都大学学报: 自然科学版, 2008, 27(4): 304-307. doi:  10.3969/j.issn.1004-5422.2008.04.011

    ZHU Bin, CHEN Yan, DENG Ke, et al. Terahertz science and technology and its applications[J]. Journal of Chengdu University: Natural Science, 2008, 27(4): 304-307. doi:  10.3969/j.issn.1004-5422.2008.04.011
    [102] 谢旭, 钟华, 袁韬, 等. 使用太赫兹技术研究航天飞机失事的原因[J]. 物理, 2003, 32(9): 583-584. doi:  10.3321/j.issn:0379-4148.2003.09.004

    XIE Xu, ZHONG Hua, YUAN Tao, et al. Used terahertz technology to study the cause of the space shuttle crash[J]. Physics, 2003, 32(9): 583-584. doi:  10.3321/j.issn:0379-4148.2003.09.004
    [103] Cheon H, YANG H J, Son J H. Toward clinical cancer imaging using terahertz spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 1-9.
    [104] 陈小婉, 蒋林华. 太赫兹技术在生物医学中的应用[J]. 激光生物学报, 2020, 29(2): 97-105. doi:  10.3969/j.issn.1007-7146.2020.02.001

    CHEN Xiaowan, JIANG Linhua. Application of terahertz technology in biomedicine[J]. Laser Biology Journal, 2020, 29(2): 97-105. doi:  10.3969/j.issn.1007-7146.2020.02.001
    [105] 姚建铨, 太赫兹技术及其应用[J]. 重庆邮电大学学报: 自然科学版, 2010, 22(6): 703-707. https://www.cnki.com.cn/Article/CJFDTOTAL-CASH201006002.htm

    YAO Jianquan. Introduction of THz-wave and its applications[J]. Journal of Chongqing University of Posts and Telecommunications: Natural Science, 2010, 22(6): 703-707. https://www.cnki.com.cn/Article/CJFDTOTAL-CASH201006002.htm
    [106] Bourdin H, Boulanger F, Lagache B G. Cold dust and very cold excess emission in the galaxy[J]. Astrophysics and Space Science, 2002: 243-246(DOI:  10.1023/A:1019558719927).
    [107] ZHANG Zhiyu, Romano D, Ivison R J, et al. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time[J]. Nature, 2018, 558: 260. doi:  10.1038/s41586-018-0196-x
    [108] Stark A A., AST/RO: A small submillimeter telescope at the south pole[J/OL]. Physics, 2001(arXiv: astro-ph/0110429).
    [109] 黄志明, 太赫兹光学差频源[M]. 北京: 科学出版社, 2016.

    HUANG Zhiming, Terahertz Optical Difference Frequency Source[M]. Beijing: Science Press, 2016: 5-6.
  • 加载中
图(18)
计量
  • 文章访问数:  416
  • HTML全文浏览量:  823
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 修回日期:  2021-06-14
  • 刊出日期:  2022-04-20

目录

    /

    返回文章
    返回