留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单片晶圆气液混合流清洗技术研究

刘佰红 杨炜平 梁翔 杨丽丽 杜浩楠 保加兵 石春明 马跃霞 殷艳娥 段瑜

刘佰红, 杨炜平, 梁翔, 杨丽丽, 杜浩楠, 保加兵, 石春明, 马跃霞, 殷艳娥, 段瑜. 单片晶圆气液混合流清洗技术研究[J]. 红外技术, 2022, 44(12): 1332-1337.
引用本文: 刘佰红, 杨炜平, 梁翔, 杨丽丽, 杜浩楠, 保加兵, 石春明, 马跃霞, 殷艳娥, 段瑜. 单片晶圆气液混合流清洗技术研究[J]. 红外技术, 2022, 44(12): 1332-1337.
LIU Baihong, YANG Weiping, LIANG Xiang, YANG Lili, DU Haonan, BAO Jiabing, SHI Chunming, MA Yuexia, YIN Yane, DUAN Yu. Study on Dual-Fluid Spray Cleaning Technique for Single-wafer Particle Removal[J]. Infrared Technology , 2022, 44(12): 1332-1337.
Citation: LIU Baihong, YANG Weiping, LIANG Xiang, YANG Lili, DU Haonan, BAO Jiabing, SHI Chunming, MA Yuexia, YIN Yane, DUAN Yu. Study on Dual-Fluid Spray Cleaning Technique for Single-wafer Particle Removal[J]. Infrared Technology , 2022, 44(12): 1332-1337.

单片晶圆气液混合流清洗技术研究

详细信息
    作者简介:

    刘佰红(1989-),男,硕士,主要从事OLED器件制造工艺。E-mail:381944996@qq.com

  • 中图分类号: TN307.5

Study on Dual-Fluid Spray Cleaning Technique for Single-wafer Particle Removal

  • 摘要: 研究了气液混合流清洗方法对单片晶圆表面颗粒的去除效果,引入无量纲参数移径比(H/D)讨论其对单片晶圆表面颗粒去除效率的影响。此外,还讨论了冲洗时间、冲洗压力对颗粒去除效率的影响。结果表明:晶圆表面颗粒去除效率随着冲洗时间、冲洗压力的增大而提高。移径比为1时晶圆表面颗粒去除效率最高;当移径比小于1时,晶圆表面颗粒去除效率随移径比增大而提高;当移径比大于1时,晶圆表面开始出现未被冲洗的区域,颗粒去除效率随移径比增大而迅速降低。采用气液混合流清洗技术,可以实现颗粒直径为0.2~0.3 μm范围的颗粒去除效率达99%以上,颗粒直径为0.1~0.5 μm范围的颗粒去除效率达96%以上。
  • 图  1  气液混合流清洗示意图

    Figure  1.  Schematic of the dual-fluid spray cleaning system

    图  2  清洗前后晶圆表面颗粒测试分布

    Figure  2.  The particle distribution on the wafer surface was measured before and after cleaning

    图  3  清洗时间对颗粒去除效率的影响

    Figure  3.  The effects of spray time on the particle removal efficiency

    图  4  移径比对颗粒去除效率的影响

    Figure  4.  The effects of displacement-diameter ratio on the particle removal efficiency

    图  5  冲洗压力对颗粒去除效率的影响

    Figure  5.  The effects of nozzle injection pressure on the particle removal efficiency

    图  6  不同粒径颗粒去除效率

    Figure  6.  Particle removal efficiency with different particle sizes

    表  1  样品实验条件

    Table  1.   Experimental condition of samples

    Sample Spray time(nT) Displacement diameter ratio(H/D) Injection pressure/(Psi)
    a 1T 0.2 40
    b 2T 0.2 40
    c 3T 0.2 40
    d 4T 0.2 40
    e 4T 0.5 40
    f 4T 1 40
    g 4T 2 40
    h 4T 0.2 20
    i 4T 0.2 30
    j 4T 0.2 50
    下载: 导出CSV
  • [1] 胡雅倩. 硅片清洗技术及发展[J]. 天津科技, 2019, 46(6): 66-67. doi:  10.3969/j.issn.1006-8945.2019.06.019

    HU Yaqian. Silicon wafer cleaning technology and its development[J]. Tianjin Science & Technology, 2019, 46(6): 66-67. doi:  10.3969/j.issn.1006-8945.2019.06.019
    [2] 李仁. 兆声清洗技术分析及应用[J]. 电子工业专用设备, 2004(1): 63-66. doi:  10.3969/j.issn.1004-4507.2004.01.017

    LI Ren. Megasonic cleaning technology analysis and application[J]. Equipment for Electronic Products Manufacturing, 2004(1): 63-66. doi:  10.3969/j.issn.1004-4507.2004.01.017
    [3] 储佳, 马向阳, 杨德仁, 等. 硅片清洗研究进展[J]. 半导体技术, 2001(3): 17-19, 34. doi:  10.3969/j.issn.1003-353X.2001.03.005

    CHU Jia, MA Xiangyang, YANG Deren, et al. Silicon wafer cleaning[J]. Semiconductor Technology, 2001(3): 17-19, 34. doi:  10.3969/j.issn.1003-353X.2001.03.005
    [4] 曹秀芳, 姚立新, 祝福生, 等. 硅片湿法清洗工艺技术及设备发展趋势[J]. 电子工业专用设备, 2011, 40(4): 9-13, 28. doi:  10.3969/j.issn.1004-4507.2011.04.002

    CAO Xiufang, YAO Lixin, ZHU Fusheng, et al. Wafer surface wet chemistry rinse technics and equipment making technology[J]. Equipment for Electronic Products Manufacturing, 2011, 40(4): 9-13, 28. doi:  10.3969/j.issn.1004-4507.2011.04.002
    [5] 王宇, 蔡亚梅, 滕霖. 超光滑表面清洗技术现状及发展趋势[J]. 航空精密制造技术, 2003(2): 1-4, 9. doi:  10.3969/j.issn.1003-5451.2003.02.001

    WANG Yu, CAI Yamei, TENG Lin, Status and trends of cleaning technology for super polished surfaces[J]. Aviation Prescision Manufacturing Technology, 2003(2): 1-4, 9. doi:  10.3969/j.issn.1003-5451.2003.02.001
    [6] WU Y, Franklin C, Bran M, et al. Acoustic property characterization of a single wafer megasonic cleaner[J]. Semiconductor Fabtech, 1999(9): 177.
    [7] 史霄, 郭春华, 杨师, 等. CMP设备兆声清洗原理及应用[J]. 电子工业专用设备, 2015, 44(11): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DGZS201511008.htm

    SHI Xiao, GUO Chunhua, YANG Shi, et al. The megasonic cleaning theory and its application in the post CMP cleaning[J]. Equipment for Electronic Products Manufacturing, 2015, 44(11): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DGZS201511008.htm
    [8] 张伟锋, 周国安, 詹阳. CMP后的晶圆清洗过程研究[J]. 电子工业专用设备, 2008(6): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DGZS200806010.htm

    ZHANG Weifeng, ZHOU Guoan, ZHAN Yang. Study on post-CMP clean process[J]. Equipment for Electronic Products Manufacturing, 2008(6): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DGZS200806010.htm
    [9] 刘传军, 赵权, 刘春香, 等. 硅片清洗原理与方法综述[J]. 半导体情报, 2000, 37(2): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ200002005.htm

    LIU Chuanjun, ZHAO Quan, LIU Chunxiang, et al. Theory and method of silicon wafer cleaning[J]. Semiconductor Information, 2000, 37(2): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ200002005.htm
    [10] 李相鑫, 杨慧毓, 李渊, 等. 无损伤气液两相雾化清洗系统研发[J]. 电子测试, 2019, 24: 98-99. https://www.cnki.com.cn/Article/CJFDTOTAL-WDZC201924040.htm

    LI Xiangxin, YANG Huiyu, LI Yuan, et al. Study of the damage free dual-fluid spray cleaning nozzle and cleaning method[J]. Electronic Test, 2019, 24: 98-99. https://www.cnki.com.cn/Article/CJFDTOTAL-WDZC201924040.htm
    [11] Kanno I. Wafer cleaning by water and gas mixture with high velocity[J]. The Electrochemical Society Proceeding, 1997, 35: 54-61.
    [12] Hirano H, Sato K, Osaka T, et al. Damage-free ultradiluted HF/nitrogen jet spray cleaning for particle removal with minimal silicon and oxide loss[J]. Electrochemical and Solid State Letters, 2006, 9(2): 62-65.
    [13] LI J, Sih V, ZHAN H. Advanced wet clean technology at lightly doped drain layers in FinFET[J]. ECS Transactions, 2016, 75(5): 185-190.
    [14] LU W, XIE B, LI Z F. An innovative jet spray for better particle removal efficiency in single wafer damage-free cleans for 65 nm node and beyond[C]//ECS Meeting Abstracts, 2007, 18: 1042.
    [15] Tanaka T, Sato M, Kobayashi M, et al. Development of a novel advanced spray technology based on investigation of droplet energy and pattern damage[C]//Solid State Phenomena, Trans Tech Publications Ltd, 2012, 187: 153-156.
    [16] TENG Y, CUI H, HEX, et al. Damage free removal of nano-particles with dual-fluid spray nozzle cleaning[C]// China Semiconductor Technology International Conference (CSTIC) of IEEE, 2016: 1-3.
    [17] 李仁. 半导体IC清洗技术[J]. 半导体技术, 2003(9): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTJ200309012.htm

    LI Ren. Semi-conductor IC cleaning technology[J]. Semiconductor Technology, 2003(9): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTJ200309012.htm
    [18] 伏国秀, 刘定斌, 乔友学. 晶圆清洗过程中静电电压超标原因与改进[J]. 电子与封装, 2012, 12(4): 31-33, 37. https://www.cnki.com.cn/Article/CJFDTOTAL-DYFZ201204008.htm

    FU Guoxiu, LIU Dingbin, QIAO Youxue. The causes and improvement of exceeding the standard electrostatic potential in wafer cleaning process after sawing[J]. Electronics & Packing, 2012, 12(4): 31-33, 37. https://www.cnki.com.cn/Article/CJFDTOTAL-DYFZ201204008.htm
    [19] 张瑜, 卞玉洋. 光刻工艺中硅片表面静电现象研究[J]. 功能材料与器件学报, 2020, 26(4): 290-299. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCQ202004008.htm

    ZHANG Yu, BIAN Yuyang. Investigation of wafer surface static electricity in lithography process[J]. Journal of Functional Materials and Devices, 2020, 26(4): 290-299. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCQ202004008.htm
    [20] Light T S, Kingman B, Bevilacqua A C. The conductivity of low concentrations of CO2 dissolved in ultrapure water from 0-100℃[C]//209th American Chemical Society National Meeting. 1995: 2-6.
    [21] Kalantari D, Tropea C. Phase doppler measurements of spray impact onto rigid walls[J]. Exp. Fluids, 2007, 43: 285-296.
    [22] Wostyn K, Wada M, Sano K I, et al. Spray systems for cleaning during semiconductor manufacturing[C/OL]//22nd European Conference on Liquid Atomization and Spray Systems, 2008: https://www.semanticscholar.org/paper/SPRAY-SYSTEMS-FOR-CLEANING-DURING-SEMICONDUCTOR-Wostyn-Wada/590875d2408ceb18b97969233db526e62205a1a7.
    [23] Yarin A L, Weiss D A. Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity[J]. Fluid Mech. 1995, 283: 141-173.
    [24] SUN Z, HAN R. Numerical studies on nano-particle removal with micro-droplet spray[C]// 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2006: 303-305.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  43
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 修回日期:  2021-11-23
  • 刊出日期:  2022-12-20

目录

    /

    返回文章
    返回