留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于梯度图像融合的接触网绝缘子故障检测

石杰 张靖 钟汉华

石杰, 张靖, 钟汉华. 基于梯度图像融合的接触网绝缘子故障检测[J]. 红外技术, 2023, 45(10): 1106-1117.
引用本文: 石杰, 张靖, 钟汉华. 基于梯度图像融合的接触网绝缘子故障检测[J]. 红外技术, 2023, 45(10): 1106-1117.
SHI Jie, ZHANG Jing, ZHONG Hanhua. Catenary Insulator Fault Detection Based on Gradient Image Fusion[J]. Infrared Technology , 2023, 45(10): 1106-1117.
Citation: SHI Jie, ZHANG Jing, ZHONG Hanhua. Catenary Insulator Fault Detection Based on Gradient Image Fusion[J]. Infrared Technology , 2023, 45(10): 1106-1117.

基于梯度图像融合的接触网绝缘子故障检测

基金项目: 

江西省教育厅青年基金项目 GJJ2200659

国家自然科学基金 52267015

详细信息
    作者简介:

    石杰(1990-),男,硕士,研究方向:电力系统故障分析与诊断。E-mail:1003569980@qq.com

    通讯作者:

    张靖(1994-),男,硕士,研究方向:电气设备故障诊断,E-mail:1780040544@qq.com

  • 中图分类号: TM854, TP391.4

Catenary Insulator Fault Detection Based on Gradient Image Fusion

  • 摘要: 针对单一红外图像或可见光图像不能够实现全天候检测的问题,提出了一种梯度图像融合模型将红外和可见光图像进行融合。先采用加速稳健特征算法(speeded-up robust features,SURF)将两幅图像的特征点进行匹配。接着采样剪切波变换(non-subsampled shearlet transform, NSST)算法将待融合图像进行分解,形成具有高频分量信息和低频分量信息的图,再分别对绝缘子的高频分量图和低频分量图进行融合,实现局部融合。利用NSST的逆变换对高频分量图和低频分量图进行逆变换,得到最终融合图,实现全局融合。对融合图像进行质量评价。采用最小二乘法直线拟合算法在二值图像的基础上来实现绝缘子的自爆检测;采用像素积分投影法来检测绝缘子片裂纹情况;采用颜色特征来检测绝缘子表面是否存在污秽的情况。通过实验对比单张图像和融合图像的检测结果的准确率。实验结果表明,采用基于融合图像的绝缘子自爆、绝缘子片裂纹、绝缘子表面污秽3个故障的识别率分别达到了95%、91%、90%,均高于单一的红外图像或可见光图像的识别率。
  • 图  1  图像配准流程

    Figure  1.  Image registration process

    图  2  图像配准实验效果

    Figure  2.  Experimental results of image registration

    图  3  图像梯度融合流程

    Figure  3.  Image gradient fusion process

    图  4  NSST图像分解

    Figure  4.  NSST image decomposition

    图  5  PCNN网络模型

    Figure  5.  PCNN network model

    图  6  红外和可见光图像融合的图像

    Figure  6.  Fusion of infrared and visible light images

    图  7  不同方法下的图像融合

    Figure  7.  Image fusion under different methods

    图  8  融合NSCT和二维最大熵分割方法分割效果

    Figure  8.  Fusion of NSCT and two-dimensional maximum entropy segmentation method results

    图  9  完好绝缘子像素积分投影(左)和裂纹绝缘子像素积分投影(右)

    Figure  9.  Pixel integral projection of intact insulator (left) and cracked insulator (right)

    表  1  不同评价指标的得分和排名

    Table  1.   Scores and rankings of different evaluation indicators

    Threshold t QAB/F EN MI MSF MSE SSIM Weighted ranking
    0.3 0.617 6.654 1.299 4.193 20.176 0.608 4
    0.4 0.273 6.78 1.68 3.212 13.882 0.608 6
    0.5 0.639 6.596 2.512 4.155 20.389 0.745 3
    0.6 0.657 6.714 3.669 7.26 23.64 0.801 1
    0.7 0.656 6.691 2.766 6.458 20.29 0.699 2
    0.8 0.645 6.674 3.663 5.966 13.59 0.802 5
    下载: 导出CSV

    表  2  正常绝缘子在不同融合方法下的图像质量评价指标

    Table  2.   Image quality evaluation indexes of normal insulators under different fusion methods

    Fusion method QAB/F EN MI MSF MSE SSIM
    LAB 0.41148 5.78892 7.36956 4.96356 39.2316 0.8004
    IHS 0.37872 5.24208 6.88776 6.24396 42.6876 0.7326
    Weighted average method 0.41268 5.1318 7.6392 8.1084 46.4256 0.85464
    Brovey 0.3774 6.44232 8.96232 6.16032 39.8748 0.67764
    Wavelet transform 0.44604 7.6032 8.05068 6.12636 39.5676 0.44376
    PCA 0.71208 6.69408 9.24612 7.58172 47.4444 1.04532
    Gradient image fusion model 0.83712 7.2426 9.49392 8.84436 51.2112 1.07448
    下载: 导出CSV

    表  3  绝缘子自爆情况下不同融合方法下的图像质量评价指标

    Table  3.   Image quality evaluation indexes under different fusion methods in the case of insulator self-explosion

    Fusion method QAB/F EN MI MSF MSE SSIM
    LAB 0.15719 5.08651 6.53543 4.32993 35.7423 0.5137
    IHS 0.12716 4.58524 6.09378 5.50363 38.9103 0.45155
    Weighted average method 0.15829 4.48415 6.7826 7.2127 42.3368 0.56342
    Brovey 0.12595 5.68546 7.99546 5.42696 36.3319 0.40117
    Wavelet transform 0.18887 6.7496 7.15979 5.39583 36.0503 0.18678
    PCA 0.43274 5.91624 8.25561 6.72991 43.2707 0.76494
    Gradient image fusion model 0.54736 6.41905 8.48276 7.88733 46.7236 0.73821
    下载: 导出CSV

    表  4  绝缘子裂纹情况下裂纹在不同融合方法下的图像质量评价指标

    Table  4.   Image quality evaluation index of crack under different fusion methods under the condition of insulator crack

    Fusion method QAB/F EN MI MSF MSE SSIM
    LAB 0.17290 5.595161 7.188973 4.762923 39.31653 0.56507
    IHS 0.13987 5.043764 6.703158 6.053993 42.80133 0.496705
    Weighted average method 0.17411 4.932565 7.46086 7.93397 46.57048 0.619762
    Brovey 0.13854 6.254006 8.795006 5.969656 39.96509 0.441287
    Wavelet transform 0.20775 7.42456 7.875769 5.935413 39.65533 0.205458
    PCA 0.47601 6.507864 9.081171 7.402901 47.59777 0.841434
    Gradient image fusion model 0.60209 7.060955 9.331036 8.676063 51.39596 0.812031
    下载: 导出CSV

    表  5  绝缘子污秽在不同融合方法下的图像质量评价指标

    Table  5.   Image quality evaluation index of insulator pollution under different fusion methods

    Fusion method QAB/F EN MI MSF MSE SSIM
    LAB 0.26719 5.19651 6.64543 4.43993 35.8523 0.6237
    IHS 0.23716 4.69524 6.20378 5.61363 39.0203 0.56155
    Weighted average method 0.26829 4.59415 6.8926 7.3227 42.4468 0.67342
    Brovey 0.23595 5.79546 8.10546 5.53696 36.4419 0.51117
    Wavelet transform 0.29887 6.8596 7.26979 5.50583 36.1603 0.29678
    PCA 0.54274 6.02624 8.36561 6.83991 43.3807 0.87494
    Gradient image fusion model 0.65736 6.52905 8.59276 7.99733 46.8336 0.84821
    下载: 导出CSV

    表  6  绝缘子故障检测的准确率对比

    Table  6.   Comparison of the accuracy of insulator fault detection

    Image type recognition accuracy An insulator without defects The exploding insulator Cracked insulator The contaminated insulator
    Infrared image 0.90 0.93 0.88 0.87
    Visible light image 0.93 0.9 0.91 0.89
    Fused image 0.94 0.95 0.91 0.90
    下载: 导出CSV
  • [1] 顾桂梅, 陈国翠. 改进GA-BP算法的棒式绝缘子表面缺陷识别[J]. 铁道科学与工程学报, 2022, 19(2): 546-553. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202202029.htm

    GU Guimei, CHEN Guocui. Surface defect identification of rod insulator with improved GA-BP algorithm[J]. Journal of Railway Science and Engineering, 2022, 19(2): 546-553. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202202029.htm
    [2] 谭平, 李旭峰, 丁进, 等. 基于Mask R-CNN和多特征聚类模型的接触网绝缘子识别和缺陷检测(英文)[J]. 浙江大学学报-理学  A(应用物理与工程) , 2022, 23(9): 745-757. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYG200702003.htm

    TAN Ping, LI Xufeng, DING Jin, et al. Insulator identification and defect detection of catenary based on Mask R-CNN and multi-feature clustering model[J]. Journal of Zhejiang University-Science A(Applied Physics and Engineering), 2022, 23(9): 745-757. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYG200702003.htm
    [3] 刘新伯, 李昊, 陈强, 等. 复杂背景下多个绝缘子串红外图像分割方法[J]. 计算技术与自动化, 2022, 41(2): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJH202202023.htm

    LIU Xinbo, LI Hao, CHEN Qiang, et al. Infrared image segmentation of multiple insulator strings in complex background[J]. Computational Technology & Automation, 2022, 41(2): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJH202202023.htm
    [4] 董懿飞, 舒胜文, 陈诚, 等. 基于红外图像分割与SSA-SVM的复合绝缘子缺陷检测方法[J]. 电气技术, 2021, 22(11): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DQJS202111014.htm

    DONG Yifei, SHU Shengwen, CHEN Cheng, et al. Composite insulator defect detection method based on infrared image segmentation and SSA-SVM [J]. Electrical Technology, 2021, 22(11): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DQJS202111014.htm
    [5] 朱文天. 输电线路绝缘子识别与光谱缺陷检测技术研究[D]. 南宁: 广西大学, 2019.

    ZHU W T. Research on Insulator Identification and Spectral Defect Detection Technology of Transmission Line[D]. Nanning: Guangxi University, 2019.
    [6] 高世闯. 基于全卷积神经网络的绝缘子识别与故障检测[D]. 石家庄: 石家庄铁道大学, 2020.

    GAO Shichuang. Insulator Identification and Fault Detection Based on Convolutional Neural Network[D]. Shijiazhuang: Shijiazhuang Railway University, 2020.
    [7] 汝承印, 张仕海, 张子淼, 等. 基于轻量级MobileNet-SSD和MobileNetV2-DeeplabV3+的绝缘子故障识别方法[J]. 高电压技术, 2022, 48(9): 3670-3679. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202209032.htm

    RU Chengyin, ZHANG Shihai, ZHANG Zimiao, et al. Insulator fault identification method based on lightweight MobileNet-SSD and MobileNetV2-DeeplabV3+[J]. High Voltage Technology, 2022, 48(9): 3670-3679. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202209032.htm
    [8] 马巧慧. 基于多特征融合的绝缘子定位与故障识别的研究[D]. 大庆: 东北石油大学, 2021.

    MA Qiaohui. Research on Insulator Location and Fault Identification Based on Multi-feature Fusion[D]. Daqing: Northeast Petroleum University, 2021.
    [9] 周亮君, 肖世德, 李晟尧, 等. 基于SURF与GPU加速数字图像处理[J]. 传感器与微系统, 2022, 41(3): 98-100. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ202203026.htm

    ZHOU Liangjun, XIAO Shide, LI Shengyao, et al. Digital image processing accelerated by SURF and GPU[J]. Sensors and Microsystems, 2022, 41(3): 98-100. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ202203026.htm
    [10] 陈熹, 张娜娜. 基于Hessian矩阵的车道线检测方法[J]. 电视技术, 2022, 46(2): 168-172. https://www.cnki.com.cn/Article/CJFDTOTAL-DSSS202202040.htm

    CHEN Xi, ZHANG Nana. Lane line detection method based on hessian matrix [J]. Television Technology, 2022, 46(2): 168-172. https://www.cnki.com.cn/Article/CJFDTOTAL-DSSS202202040.htm
    [11] 余波, 吴静, 周琦宾. 一种基于改进Canny算子的边缘检测算法[J]. 制造业自动化, 2022, 44(8): 24-26, 43. https://www.cnki.com.cn/Article/CJFDTOTAL-JXGY202208006.htm

    YU Bo, WU Jing, ZHOU Qibin. An edge detection algorithm based on improved Canny operator[J]. Manufacturing Automation, 2022, 44(8): 24-26, 43. https://www.cnki.com.cn/Article/CJFDTOTAL-JXGY202208006.htm
    [12] 崔晓荣, 沈涛, 黄建鲁, 等. FABEMD和改进局部能量窗口的红外中波和长波图像融合[J]. 光谱学与光谱分析, 2021, 41(7): 2043-2049. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202107009.htm

    CUI Xiaorong, SHEN Tao, HUANG Jianlu, et al. FABEMD and improved local energy window for infrared medium and long wave image fusion[J]. Spectroscopy and Spectral Analysis, 2021, 41(7): 2043-2049. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202107009.htm
    [13] 杨晓城, 杨真乙, 阎敬业, 等. 基于拉普拉斯算子的综合孔径辐射计成像算法[J]. 电子学报, 2022, 50(2): 339-345. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU202202009.htm

    YANG Xiaocheng, YANG Zhenyi, YAN Jingye, et al. Integrated aperture radiometer imaging algorithm based on Laplace operator[J]. Journal of Electronics, 2022, 50(2): 339-345. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU202202009.htm
    [14] 吴肖楚. 基于非下采样剪切波变换的低照度图像增强算法研究[D]. 南京: 南京邮电大学, 2020.

    WU Xiaochu. Research on Low Illuminance Image Enhancement Algorithm Based on Non Downsampling Shear Wave Transform[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020.
    [15] 石森, 李小平, 徐家梁. 基于能量加权溶解气体分析的IPSO-BP变压器早期故障诊断[J]. 制造业自动化, 2022, 44(5): 43-45, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-JXGY202205011.htm

    SHI Sen, LI Xiaoping, XU Jialiang. Early fault diagnosis of IPSO-BP transformer based on energy weighted dissolved gas analysis[J]. Manufacturing Automation, 2022, 44(5): 43-45, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-JXGY202205011.htm
    [16] 张捍卫, 李晓玲, 杨永勤, 等. 拉普拉斯算子[J/OL] [2022-10-13]. 导航定位学报: 1-8. https://www.doc88.com/p-39339696421316.html.

    ZHANG Hanwei, LI Xiaoling, YANG Yongqin, et al. Laplace operator [J/OL] [2022-10-13]. Journal of Navigation and Positioning: 1-8. https://www.doc88.com/p-39339696421316.html.
    [17] 刘子英, 张靖, 邓芳明. 基于BP神经网络的高压隔离开关分合闸监测识别[J]. 电力系统保护与控制, 2020, 48(5): 134-140. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW202005018.htm

    LIU Ziying, ZHANG Jing, DENG Fangming. Monitoring and identification of high voltage isolation switch opening and closing based on BP neural network[J]. Power System Protection and Control, 2020, 48(5): 134-140. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW202005018.htm
    [18] York D. Least squares fitting of a straight line with correlated errors[J]. Earth and Planetary Science Letters, 1968, 5: 320-324.
    [19] 崔庆华, 程科, 李肇基. 积分投影与连通域法结合的人眼定位[J]. 计算机与数字工程, 2019, 47(4): 949-953. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSG201904043.htm

    CUI Qinghua, CHENG Ke, LI Zhaoji. The combination of integral projection and connected domain method for human eye localization[J]. Computer and Digital Engineering, 2019, 47(4): 949-953. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSG201904043.htm
    [20] 赵文竹. 基于图像颜色特征提取的维生素C含量测定方法研究[D]. 淮北: 淮北师范大学, 2021.

    ZHAO Wenzhu. Research on the Method for Determining Vitamin C Content Based on Image Color Feature Extraction[D]. Huaibei: Huaibei Normal University, 2021.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  9
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-27
  • 修回日期:  2023-01-19
  • 刊出日期:  2023-10-20

目录

    /

    返回文章
    返回