留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚波长金属光栅偏振器制备技术研究

杨江涛 王健安 王银 胡啸

杨江涛, 王健安, 王银, 胡啸. 亚波长金属光栅偏振器制备技术研究[J]. 红外技术, 2021, 43(1): 8-12.
引用本文: 杨江涛, 王健安, 王银, 胡啸. 亚波长金属光栅偏振器制备技术研究[J]. 红外技术, 2021, 43(1): 8-12.
YANG Jiangtao, WANG Jianan, WANG Yin, HU Xiao. Fabrication Technology of a Subwavelength Metal Grating Polarizer[J]. INFRARED TECHNOLOGY, 2021, 43(1): 8-12.
Citation: YANG Jiangtao, WANG Jianan, WANG Yin, HU Xiao. Fabrication Technology of a Subwavelength Metal Grating Polarizer[J]. INFRARED TECHNOLOGY, 2021, 43(1): 8-12.

亚波长金属光栅偏振器制备技术研究

基金项目: 

国家自然科学基金青年基金 61905172

博士科研启动基金项目 20192015

来晋优秀博士奖励资金项目 20192068

详细信息
    作者简介:

    杨江涛(1988-),男,汉族,山西运城人,博士,讲师,研究方向:MEMS惯性器件及光电传感导航方面的研究。E-mail: yangjiangtao6567@tyust.edu.cn

  • 中图分类号: TH706

Fabrication Technology of a Subwavelength Metal Grating Polarizer

  • 摘要: 亚波长周期结构光栅具有传统光栅所不具有的特殊特性,采用严格耦合波法设计并制作了一种柔性双层金属光栅偏振器,通过纳米压印技术在方形的PC(Polycarbonate,聚碳酸酯)上制备了周期为278 nm,深度为110 nm,占空比为0.5的亚波长光栅,通过磁控溅射技术在制作的介质光栅上沉积了70 nm的金属铝层,制作了具有双层金属结构的柔性双层金属光栅偏振器,并用光谱测试系统进行了简单的性能测试。实验结果表明,当入射光波长范围在350~800 nm时,制作的柔性双层光栅偏振器偏振特性优良,且具有非常高的透过率和消光比,分别高达48%和100000。该制作工艺只由纳米压印和金属蒸镀完成,省去了复杂的涂胶、剥离及刻蚀,因此在大批量生产偏振器方面具有很明显的优势,可普遍用于光探测器件、光电开光等半导体光电子器件的制作过程。
  • 图  1  金属光栅偏振示意图

    Figure  1.  Schematic of metal grating

    图  2  模板的SEM图

    Figure  2.  Scanning electron microscope (SEM) image of nanoimprint template

    图  3  模板防粘

    Figure  3.  Anti sticking of Si template

    图  4  柔性双层金属光栅偏振器的制作工艺流程图

    Figure  4.  Manufacturing process flow chart of flexible double layer metal grating polarizer

    图  5  在PC基底压印亚波长光栅

    Figure  5.  Printing subwavelength grating on PC substrate

    图  6  PC光栅结构的实物图和SEM图

    Figure  6.  Physical and SEM pictures of PC grating structure

    图  7  光栅偏振特性测试装置示意图

    Figure  7.  Schematic of laboratory measurement setup

    图  8  柔性双层金属光栅偏振器的性能测试图

    Figure  8.  Performance test chart of flexible double layer metal grating polarizer

    表  1  柔性双层金属光栅偏振器的参数

    Table  1.   Parameters of subwavelength metal grating polarizer

    Materials and structures Materials and parameters
    Substrate materials PC
    Metallic materials Al
    Period/nm 278
    Duty cycle 0.5
    Aluminum thickness/nm 70
    Distance between two metal grating layers/nm 50
    PC grating height/nm 100
    下载: 导出CSV
  • [1] Chou S Y, Krauss P R, Renstrom P J. Imprint lithography with 25-nanometer resolution[J]. Science, 1996, 272(5258): 85-87. doi:  10.1126/science.272.5258.85
    [2] Ekinci Y, Solak H H, David C, et al. Bilayer AL wire-grids as broadband and high-performance polarizers[J]. Optics Express, 2006, 14: 2323-2334. doi:  10.1364/OE.14.002323
    [3] Kim S H, Lee K D, Kim J Y, et al. Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography[J]. Nanotechnology, 2007, 18: 055306/1-5.
    [4] YANG Z Y, LU Y F. Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions[J]. Optics Express, 2007, 15: 9510-9519. doi:  10.1364/OE.15.009510
    [5] GE Z, WU S T. Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays[J]. Applied Physics Letters, 2008, 93(12): 121104-121106. doi:  10.1063/1.2988267
    [6] Ahn S H, Kim J S, Guo L J. Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate[J]. Journal of Vacuum Science & Technology B, 2007, 25: 2388-2391.
    [7] DENG S R, LU B R, DONG B Q, et al. Effective polarization control of metallic planar chiral metamaterials with complementary rosette pattern fabricated by nanoimprint lithography[J]. Microelectronic Engineering, 2010, 87: 985-988. doi:  10.1016/j.mee.2009.11.123
    [8] Suyatin D B, Sun J, Fuhrer A, et al. Electrical properties of self-assembled branched InAs nanowire junctions[J]. Nano Letters, 2008(8): 1100-1104.
    [9] GAO C H, WANG B, FU C, et al. Polarization-controlled grating polarizer under second Bragg incidenc with silver deposited in groove[J]. Optics Communications, 2020: 459.
    [10] 汤厚睿.氧化锌亚波长光栅偏振分束器的设计与分析[D].南京: 南京邮电大学, 2019.

    TANG H R. Design and analysis of ZnO-based sub-wavelength grating polarization beam splitter[D]. Nanjing: Nanjing University of Posts And Telecommunications, 2019.
    [11] 张冲, 胡敬佩, 周如意, 等.深紫外光栅反常偏振器件的设计与分析[J].中国激光, 2020, 47(3): 0301005.

    ZHANG C, HU J P, ZHOU R Y, et al. Design and analysis of inverse polarization grating devices for deep ultraviolet light[J]. Chinese Journal of Lasers, 2020, 47(3): 0301005.
    [12] Ahn She Won, Lee Ki Dong, Kim Jin Sung, et al. Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography[J]. Nanotechnology, 2005, 16: 1874-1877. doi:  10.1088/0957-4484/16/9/076
    [13] 康果果, 谭桥峰, 陈伟力, 等.亚波长金属线删偏振器的设计、制备及偏振成像实验研究[J].物理学报, 2011, 60(1): 014218/1-7.

    KANG G G, TAN Q F, CHEN W L, et al. Design and fabrication of sub-wavelength metal wire-grid and its application to experimental study of polarimetric imaging[J]. Acta Physica Sinica, 2011, 60(1): 014218/1-7.
    [14] 康宁, 唐军, 李大林, 等.亚波长金属偏振光栅设计与分析[J].传感器与微系统, 2015, 34(2): 79-84.

    KANG N, TANG J, LI D L, et al. Design and analysis of sub-wavelength metal polarization grating[J]. Transducer and Microsystem Technologies, 2015, 34(2): 79-84.
    [15] WU Chienli, SUNG Chengkuo, YAO Pohung, et al. Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift[J]. Nanotechnology, 2013, 24(26): 265301/ 1-7.
    [16] Yamada Itsunari, Yamashita Naoto, Tani Kunihiko, et al. Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass[J]. Optics Letters, 2011, 36(19): 3882-3884. doi:  10.1364/OL.36.003882
    [17] 常闪闪, 麻云凤, 廖利芬, 等.基于空气隙棱镜实现布鲁斯特角型偏振器消光比测量[J].红外技术, 2019, 41(9): 882-886. http://hwjs.nvir.cn/article/id/hwjs201909013

    CHANG S S, MA Y F, LIAO L F, et al. Measurement of extinction ratio of brewster angle polarizer based on air gap prism[J]. Infrared Technology, 2019, 41(9): 882-886. http://hwjs.nvir.cn/article/id/hwjs201909013
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  5
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-09
  • 修回日期:  2020-12-28
  • 刊出日期:  2021-01-20

目录

    /

    返回文章
    返回