留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑体与恒星相结合的短波红外遥感器在轨辐射定标简析

晋利兵 李晓曼 练敏隆 高慧婷 周吉

晋利兵, 李晓曼, 练敏隆, 高慧婷, 周吉. 黑体与恒星相结合的短波红外遥感器在轨辐射定标简析[J]. 红外技术, 2023, 45(2): 123-128.
引用本文: 晋利兵, 李晓曼, 练敏隆, 高慧婷, 周吉. 黑体与恒星相结合的短波红外遥感器在轨辐射定标简析[J]. 红外技术, 2023, 45(2): 123-128.
JIN Libing, LI Xiaoman, LIAN Minlong, GAO Huiting, ZHOU Ji. Analysis of the In-Orbit Radiation Calibration of SWIR Remote Sensing System Combined with Blackbody and Star[J]. Infrared Technology , 2023, 45(2): 123-128.
Citation: JIN Libing, LI Xiaoman, LIAN Minlong, GAO Huiting, ZHOU Ji. Analysis of the In-Orbit Radiation Calibration of SWIR Remote Sensing System Combined with Blackbody and Star[J]. Infrared Technology , 2023, 45(2): 123-128.

黑体与恒星相结合的短波红外遥感器在轨辐射定标简析

基金项目: 

国家自然科学基金(空间石墨烯膜基冷链强化传热及减振机理研究) 52106071

详细信息
    作者简介:

    晋利兵(1990-),男,山西晋中人,高级工程师,从事红外遥感总体设计工作。E-mail: jlb_99148@126.com

  • 中图分类号: TP171.3

Analysis of the In-Orbit Radiation Calibration of SWIR Remote Sensing System Combined with Blackbody and Star

  • 摘要: 为满足气象水文、天文观测等领域对短波红外遥感器高精度探测需求,近年来对短波红外探测定量化应用的需求越来越高。本文针对高轨面阵短波红外遥感器在轨各种因素引起的非均匀性变化情况,基于面源黑体定标结合恒星定标的在轨绝对辐射定标设计方案,结合某遥感器任务研制过程的具体实际,分析了定标精度主要影响因素及优化措施,包括星上定标方案优化、星上黑体温度控制优化、恒星提取算法优化等。通过实验室测试对在轨辐射定标方法进行了验证,并对在轨绝对辐射定标不确定度进行预估,评估结果表明定标不确定度能够满足应用要求。
  • 图  1  高温黑体组件、低温黑体组件设计及实物

    Figure  1.  Design drawing and physical drawing of high temperature blackbody component and cryogenic blackbody component

    图  2  测试布局原理(上)及测试过程实物(下)

    Figure  2.  Testing schematic diagram(upper) & layout(down)

    图  3  相机点目标信噪比测试目标点周围9×9输出图像

    Figure  3.  Point target SNR ratio test around target point 9×9 output image

    表  1  某红外遥感器主要技术参数

    Table  1.   Parameters of the remote sensing system to be tested

    Technical parameters Value
    Aperture of optical system/mm 250
    Focal length of optical system/mm 425
    Signal to noise ratio ≥5
    Field of view/° 0.85×0.68
    Number of detector pixels 640×512
    Spectral range/μm 2-3
    下载: 导出CSV

    表  2  高、低温黑体计算结果

    Table  2.   Calculation results of high temperature blackbody and cryogenic blackbody

    ITEMS Temperature
    stability
    Temperature
    uniformity
    High-temperature blackbody <0.1℃/min 0.3℃
    Low-temperature blackbody <0.1℃/min 0.3℃
    下载: 导出CSV

    表  3  黑体定标结果、仿恒星定标结果及修正系数

    Table  3.   Blackbody calibration results, stellar simulation calibration results and correction coefficients

    Test number Stellar simulation calibration results Blackbody calibration results Correction coefficients
    Kw Cw Kn Cn Rk Rc
    1 2838.6 34.1 2745.2 32.9 1.034 4.37E-04
    2 2838.4 34.2 2745.3 32.9 1.033 4.73E-04
    3 2838.7 34.0 2745.3 32.8 1.034 4.37E-04
    下载: 导出CSV

    表  4  红外遥感器在轨绝对辐射定标不确定度

    Table  4.   On orbit absolute radiometric calibration uncertainty of infrared camera

    Influencing factors Error source Estimated value
    δbb-Tacc Blackbody temperature accuracy 2.10%
    δbb-emi Blackbody emissivity uncertainty 1.00%
    δbb-Tuni Outlet blackbody temperature uncertainty 0.74%
    δbb-Tsta Blackbody temperature stability uncertainty 1.17%
    δrad Instability of camera output signal 1.17%
    δcam-noise Camera time noise error 1.70%
    δres-non Camera responses nonlinerity error 1.00%
    δstrlight Camera stray light effect 1.00%
    Total σ/rms 3.68%
    下载: 导出CSV
  • [1] 马文坡. 航天光学遥感技术[M]. 北京: 中国科学技术出版社, 2011: 210-211.

    MA Wenpo. Aerospace Optical Remote Sensing Technology[M]. Beijing: China Science and Technology Press, 2011: 210-211.
    [2] 陈世平. 空间相机设计与试验[M]. 北京: 宇航出版社, 2003: 24-25, 334-360.

    CHEN Shiping. Space Camera Design and Experiment[M]. Beijing: China Astronautics Press, 2003: 24-25, 334-360.
    [3] Barnes W, Pagano T, Salomonson V. Prelaunch characterics of the moderate resolution imaging spectroardiometer(MODIS) on EOS-AMI[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4): 1088-1100. doi:  10.1109/36.700993
    [4] Coll C, Caselles V, Galve J M, et al. Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data[J]. Remote Sensing of Environment, 1997(3): 288-300.
    [5] Shibai H. ASTRO-F mission[C]//Astronomical Telescopes & Instru-mentation. International Society for Optics and Photonics, 2003: 589-593.
    [6] Price S D, Paxson C, Engelke C, et al. Spectral irradiance calibration in the infrared. XV. absolute calibration of standard stars by experiments on the midcourse space experiment[J]. Astronomical Journal, 2004, 128(2): 889-910. doi:  10.1086/422024
    [7] 张保贵, 张宇烽. 空间CCD相机辐射校正算法分析[J]. 航天返回与遥感, 2014, 35(1): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201401013.htm

    ZHANG Baogui, ZHANG Yufeng. Analysis of relative radiometric calibration algorithm of space CCD camera[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(1): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201401013.htm
    [8] 赵晓熠, 张伟, 谢蓄芬. 绝对辐射定标与相对辐射定标的关系研究[J]. 红外, 2011, 20(1): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201009008.htm

    ZHAO Xiaoyi, ZHANG Wei, XIE Yufen. Study on the relationship between absolute radiometric calibration and relative radiometric calibration[J]. Infrared, 2011, 20(1): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201009008.htm
    [9] 龙亮, 王中民. 一种基于卫星敏捷特性的在轨辐射定标方法[J]. 航天返回与遥感, 2013, 34(4): 77-85. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201304015.htm

    LONG Liang, WANG Zhongmin. An on-orbit calibration method based on characteristic of satellites[J]. Spacecraft Recovery & Remote Sensing, 2013, 34(4): 77-85. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201304015.htm
    [10] 李晓曼, 赵艳华, 马文坡. 热红外遥感器温度灵敏度提升手段简析[J]. 遥感学报, 2021, 25(8): 1655-1660. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202108008.htm

    LI Xiaoman, ZHAO Yanhua, MA Wenpo. Analysis of the means to improve the temperature sensitivity of thermal IR remote sensing system[J]. National Remote Sensing Bulletin, 2021, 25(8): 1655-1660. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202108008.htm
    [11] 刘莉, 陈林, 徐寒列, 等. "委遥二号"卫星长波红外通道在轨辐射定标[J]. 航天返回与遥感, 2019, 40(3): 94-102. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201903013.htm

    LIU Li, CHEN Lin, XU Hanlie, et al. On-orbit radiometric calibration in long wave infrared band of VRSS-2 satellite[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(3): 94-102. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201903013.htm
    [12] 安萌, 梁德印, 聂云松, 等. "资源一号"02E星红外相机探测器成像验证方法研究[J]. 航天返回与遥感, 2021, 42(4): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202104006.htm

    AN Meng, LIANG Deyin, NIE Yunsong, et al. Research on infrared detector imaging test methods for ZY-1 02E satellite[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(4): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202104006.htm
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  51
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-19
  • 修回日期:  2022-06-23
  • 刊出日期:  2023-02-20

目录

    /

    返回文章
    返回