基于改进YOLOv5s的航拍红外图像目标识别方法

王悠, 韩立祥, 付贵

王悠, 韩立祥, 付贵. 基于改进YOLOv5s的航拍红外图像目标识别方法[J]. 红外技术, 2024, 46(7): 775-781, 801.
引用本文: 王悠, 韩立祥, 付贵. 基于改进YOLOv5s的航拍红外图像目标识别方法[J]. 红外技术, 2024, 46(7): 775-781, 801.
WANG You, HAN Lixiang, FU Gui. Aerial Infrared Image Target Recognition Method Based on Improved YOLOv5s[J]. Infrared Technology , 2024, 46(7): 775-781, 801.
Citation: WANG You, HAN Lixiang, FU Gui. Aerial Infrared Image Target Recognition Method Based on Improved YOLOv5s[J]. Infrared Technology , 2024, 46(7): 775-781, 801.

基于改进YOLOv5s的航拍红外图像目标识别方法

基金项目: 

中央高校基本科研业务费基金项目 J2022-024

四川省通用航空器维修工程技术研究中心资助课题 GAMRC2021ZD01

详细信息
    作者简介:

    王悠(1978-),女,广西陆川人,高级实验师,硕士生导师,研究方向:计算机技术协同应用研究。Email:yoyo_wang@126.com

    通讯作者:

    付贵(1990-),男,博士研究生,讲师,主要从事深度学习、图像处理、无人机视觉伺服控制等研究。Email:abyfugui@163.com

  • 中图分类号: TP391.4

Aerial Infrared Image Target Recognition Method Based on Improved YOLOv5s

  • 摘要:

    为了提高无人机在黑暗条件下的识别效率,降低在复杂环境及路况方面存在漏检及延时效果等问题,本文提出了一种改进的YOLOv5s-GN-CB红外图像识别方法,该方法可以提高无人机红外航拍图像对车、人等多类目标识别效率。本文对YOLOv5s的主要改进包括以下3个方面:将Ghost引入到YOLOv5s主干网络中,并将NWD loss损失函数融入至Ghost中;添加注意力机制CA;添加加权双向特征金字塔BiFPN。经验证,改进的YOLOv5s-GN-CB检测模型在InfiRay红外航拍人车检测数据集下目标识别平均精度均值(mAP@0.5)达到95.1%,FPS提高至75.188帧/s。相较于YOLOv5原始模型的平均精度均值和FPS分别提高了4.2%和12.02%。在对同一场景中无人机航拍红外图像目标识别的检测精度有明显提升,延时率有所下降。

    Abstract:

    To enhance the recognition efficiency of UAVs in dark conditions and reduce missed detections and delays in complex environments and road conditions, this study proposes an improved YOLOv5s-GN-CB infrared image recognition method. This method enhances the efficiency of UAV infrared aerial images for detecting vehicles, people, and other types of targets. The main improvements to YOLOv5s achieved in this study include the following three aspects: 1) introducing the Ghost module into the YOLOv5s backbone network and incorporating NWD loss into Ghost; 2) adding the coordinate attention (CA) mechanism; 3) incorporating a weighted bidirectional feature pyramid network (BiFPN). The improved YOLOv5s-GN-CB detection model achieves an average accuracy of 95.1% (mAP@0.5) on the InfiRay infrared aerial photography man-vehicle detection dataset, with the FPS increased to 75.188 frames per second. Compared with the original YOLOv5 model, the average accuracy and FPS are improved by 4.2% and 12.02%, respectively. In the same scenario, the detection accuracy of UAV aerial photography infrared image target recognition has been significantly improved, and the delay rate has decreased.

  • 图  1   Ghost Bottleneck模块原理图

    Figure  1.   Module schematic of the Ghost Bottleneck

    图  2   Ghost module模块原理图

    Figure  2.   Module schematic of the Ghost module

    图  3   CA注意力模块

    Figure  3.   CA attention module

    图  4   C×H×1和C×1×W的特征图

    Figure  4.   C×H×1 and C×1×W characteristic diagram

    图  5   BiFPN注意力模块

    Figure  5.   BiFPN attention module

    图  6   改进后YOLOv5s网络结构

    Figure  6.   Improved YOLOv5s network structure

    图  7   检测结果示例:两个场景下各改进各算法的检测效果

    Figure  7.   Example of detection results: The detection effect of each algorithm is improved in two scenarios

    图  8   改进前后不同模型的参数变化对比

    Figure  8.   Comparison of parameter variations of different models before and after improvement

    表  1   消融实验结果对比

    Table  1   Comparison of ablation experimental results

    Models mAP@0.5 F1 FPS
    YOLOv5s 90.9 87 67.114
    YOLOv5s- GC 93.9 89 75.188
    YOLOv5s- GN 94.1 89 74.627
    YOLOv5s- CB 94.2 90 44.053
    YOLOv5s- GN-CB 95.1 91 75.188
    下载: 导出CSV

    表  2   主流算法对比实验结果

    Table  2   Comparative experiments with mainstream algorithms

    Models mAP@0.5/ (%) FPS/(frame/s) Weight coefficient/MB
    YOLOv5s 90.9 67.114 3.69
    YOLOv5s-Ghost 93.9 75.188 7.44
    YOLOv5s-GN 94.1 75.188 11.5
    YOLOv5s-MobileNetV3 92.0 56.180 7.31
    YOLOv5x 97.7 14.164 171
    Ours 95.1 75.188 11.6
    下载: 导出CSV
  • [1] 张志强, 王萍, 于旭东, 等. 高精度红外热成像测温技术研究[J]. 仪器仪表学报, 2020, 41(5): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202005002.htm

    ZHANG Zhiqiang, WANG Ping, YU Xudong, et al. Research on high-precision infrared thermal imaging temperature measurement technology [J]. Chinese Journal of Scientific Instrument, 2020, 41(5): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202005002.htm

    [2]

    Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. 2018-04-08, [2022-08-12]. https://arxiv.org/abs/1804.02767.

    [3]

    LIU W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector[C]//Computer Vision-ECCV, 2016: 21-37.

    [4]

    Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 779-788.

    [5]

    ZHAO Z Y, YANG X X, ZHOU Y CH, et al. Real-time detection of particleboard surface defects based on improved YOLOV5 target detection[J]. Scientific Reports, 2021, 11(1): 1-15. DOI: 10.1038/s41598-020-79139-8

    [6]

    WANG J, CHEN Y, GAO M, et al. Improved YOLOv5 network for real-time multi-scale traffic sign detection[J/OL]. arXiv: 2112.08782, https://arxiv.org/abs/2112.08782

    [7]

    WEI Yi, LI Xiaofei, LIN Lihui, et al. Causal discovery on discrete data via weighted normalized wasserstein distance[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 4911-4923. Doi: 10.1109/TNNLS.2022.3213641

    [8]

    HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.

    [9]

    TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.

    [10]

    LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.

    [11]

    Nawaz Marriam, Nazir Tahira, Baili Jamel, et al. CXray-EffDet: chest disease detection and classification from X-ray images using the efficientdet model[J]. Diagnostics, 2023, 13(2): 248-248. DOI: 10.3390/diagnostics13020248

    [12]

    HAO Hongyun, FANG Peng, DUAN Enze, et al. A dead broiler inspection system for large-scale breeding farms based on deep learning[J]. Agriculture, 2022, 12(8): 1176-1176. DOI: 10.3390/agriculture12081176

    [13] 郭吉朋. 基于YOLOv3模型的实时目标检测算法的FPGA实现[D]. 武汉: 华中科技大学, 2020. DOI: 10.27157/d.cnki.ghzku.2020.004780.

    GUO Jipeng. FPGA implementation of real-time object detection algorithm based on YOLOv3 model[D]. Wuhan: Huazhong University of Science and Technology, 2020. DOI: 10.27157/d.cnki.ghzku.2020.004780.

    [14]

    Aliyi Salih, Dese Kokeb, Raj Hakkins. Detectio of gastrointestinal tract disorders using deep learning methods from colonoscopy images and videos[J]. Scientific African, 2023, 20: e01628. DOI: 10.1016/j.sciaf.2023.e01628

    [15] 王新彦, 易政洋. 基于改进YOLOv5的割草机器人工作环境障碍物检测方法研究[J]. 中国农机化学报, 2023, 44(3): 171-176. DOI: 10.13733/j.jcam.issn.2095-5553.2023.03.024.

    WANG Xinyan, YI Zhengyang. Research on obstacle detection method of mowing robot working environment based on improved YOLOv5[J]. Journal of Chinese Agricultural Mechannization, 2023, 44(3): 171-176. DOI: 10.13733/j.jcam.issn.2095-5553.2023.03.024.

    [16] 徐正军, 张强, 许亮. 一种基于改进YOLOv5s-Ghost网络的交通标志识别方法[J]. 光电子·激光, 2023, 34(1): 52-61. DOI:10.16136/j.joel. 2023.01.0216.

    XU Zhengjun, ZHANG Qiang, XU Liang. Research on obstacle detection method for working environment of lawn mower robot based on improved YOLOv5[J]. Journal of Optoelectronics Laser, 2023, 34(1): 52-61. DOI:10.16136/j.joel. 2023.01.0216.

    [17] 党宏社, 党晨, 张选德. 基于改进YOLOv5s的交通标志识别算法[J]. 实验技术与管理, 2022, 39(9): 97-102. DOI: 10.16791/j.cnki.sjg.2022.09.016.

    DANG Hongshe, DANG Chen, ZHANG Xuande. Traffic sign recognition algorithm based on improved YOLOv5s[J]. Experimental Technology and Management, 2022, 39(9): 97-102. DOI: 10.16791/j.cnki.sjg.2022.09.016.

  • 期刊类型引用(3)

    1. 杨旭,李氡,段军勇,姚淼. 基于物探技术的矿区岩土自动化检测数据采集系统设计. 自动化与仪器仪表. 2024(03): 144-148 . 百度学术
    2. 戎靖,李入作,王杰,谢欣. 基于卡尔曼滤波算法的电机速度数据自动采集系统设计. 电子设计工程. 2024(22): 63-67 . 百度学术
    3. 韩颖. 基于卡尔曼滤波的MEMS陀螺噪声抑制算法设计与实现. 电子测试. 2021(19): 51-53+40 . 百度学术

    其他类型引用(1)

图(8)  /  表(2)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  25
  • PDF下载量:  62
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-04-16
  • 修回日期:  2023-05-16
  • 网络出版日期:  2024-07-24
  • 刊出日期:  2024-07-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日