制冷型大相对孔径长波红外光学系统设计

李阳, 王保华, 张绪国, 龙亮, 周紫薇, 李林鹏

李阳, 王保华, 张绪国, 龙亮, 周紫薇, 李林鹏. 制冷型大相对孔径长波红外光学系统设计[J]. 红外技术, 2025, 47(3): 265-271.
引用本文: 李阳, 王保华, 张绪国, 龙亮, 周紫薇, 李林鹏. 制冷型大相对孔径长波红外光学系统设计[J]. 红外技术, 2025, 47(3): 265-271.
LI Yang, WANG Baohua, ZHANG Xuguo, LONG Liang, ZHOU Ziwei, LI Linpeng. Design of Cooled Large-Relative Aperture Long-Wavelength Infrared Optical System[J]. Infrared Technology , 2025, 47(3): 265-271.
Citation: LI Yang, WANG Baohua, ZHANG Xuguo, LONG Liang, ZHOU Ziwei, LI Linpeng. Design of Cooled Large-Relative Aperture Long-Wavelength Infrared Optical System[J]. Infrared Technology , 2025, 47(3): 265-271.

制冷型大相对孔径长波红外光学系统设计

详细信息
    作者简介:

    李阳(1992-),男,陕西宝鸡人,工程师,硕士,主要从事空间光学遥感器总体和光学系统设计技术的研究。E-mail: 1061968388@qq.com

  • 中图分类号: TN216

Design of Cooled Large-Relative Aperture Long-Wavelength Infrared Optical System

  • 摘要:

    针对320×256长波制冷型面阵探测器,提出并设计了一款制冷型长波红外成像光学系统。该光学系统由5片透镜组成,通过不同材料组合与后焦调节机构设计,实现了系统在工作温度-40℃~70℃范围内清晰成像。光学系统的工作谱段为7.5~9.5 μm,焦距为50 mm,相对孔径为1/2,全视场为11°×8.8°,系统具有结构简单紧凑、相对孔径大、透过率高等优点。设计结果显示,光学系统在奈奎斯特频率为16.7 lp/mm处MTF优于0.594,均方根尺寸均小于单个像元尺寸,在像元尺寸内能量集中度高于88.5%,畸变小于0.23%。公差分配后,系统MTF优于0.504,表明该光学系统易于加工装调、实现性高,装配后具有良好的成像性能。

    Abstract:

    A cooled long-wavelength infrared imaging optical system is proposed and designed for a 320×256 long-wavelength refrigerated area array detector. The optical system is composed of five lenses, and the system is designed with different material combinations and a back-focus adjustment mechanism to achieve clear imaging in the operating temperature of -40℃ to 70℃. The working spectrum of the optical system is 7.5-9.5 μm. The focal length is 50 mm; the relative aperture is 1/2; and the full field of view is 11°×8.8°. This system has the advantages of a simple structure, large relative aperture, and high transmittance. Design results show that the modulation transfer function (MTF) of the optical system is better than 0.594 at a Nyquist frequency of 16.7 lp/mm, and the root mean square size is smaller than the single pixel size. Energy concentration is better than 88.5% within the pixel size, and distortion is less than 0.23%. After setting a tolerance, the MTF of the system was better than 0.504, indicating that the system is easy to process, has high realizability, and exhibits good imaging performance after assembly.

  • 图  1   制冷型长波红外光学系统原理

    Figure  1.   Schematic diagram of a cooled long-wavelength infrared optical system

    图  2   探测器光敏面原理图

    Figure  2.   Schematic diagram of detector photosensitive surface

    图  3   光学系统设计结果

    Figure  3.   Optic system design structure

    图  4   光学系统像质评价结果

    Figure  4.   Diagram of the image quality evaluation result of the optical system

    图  5   -40~70℃环境温度下MTF曲线

    Figure  5.   The MTF curves at ambient temperature of -40~70℃

    图  6   各表面NITD贡献量

    Figure  6.   The NITD contribution diagram of each surface

    表  1   光学设计技术指标

    Table  1   Parameters of optical system

    Item Value
    Wave lengths/μm 7.5-9.5
    Focal length/mm 50
    Aperture/mm 25
    FOV/° 11×8.8
    Relative aperture 1/2
    Exit pupil diameter/mm 19.8
    Pixel pitch/μm 30×30
    Operating temperature/℃ -40~70
    Image pitch /mm 9.6×7.68
    下载: 导出CSV

    表  2   光学系统结构参数

    Table  2   Structure parameters of optical system

    Optical element Radius of curvature/mm Thickness/mm Glass
    Lens 1 150 6 ZnS(Broad)
    214.432 2.495
    Lens 2 39.242 6 ZnSe
    26.051 2.905
    Lens 3 28.664 6 Ge
    32.038 24.880
    Lens 4 441.917 3.992 Ge
    -142.966 1.482
    Lens 5 -37.016 3.493 Ge
    -44.102 1.435
    Window - 1 Ge
    - 0.5
    STO - 19.8
    下载: 导出CSV

    表  3   各表面YNI、I/IBAR值

    Table  3   YNI、I/IBAR values for each surface

    Surface YNI I/IBAR
    S2 1.36270 1.065930
    S3 1.37946 1.064638
    S4 2.21885 1.541570
    S5 2.66172 1.681644
    S6 2.22979 1.381668
    S7 0.87653 0.610067
    S8 -1.63084 17.280669
    S9 -6.35113 1.929954
    S10 -6.44843 1.881130
    S11 -3.61138 2.374631
    S12 -0.32335 0.322912
    S13 -1.11361 3.046202
    下载: 导出CSV

    表  4   光学系统加工公差

    Table  4   Machining tolerances for optical system

    Optical Element Curvature radius tolerance /mm Thickness tolerance /mm Surface angle tolerance /′ Surface shape tolerance PV,RMS λ=0.6328μm
    Lens1 ±0.05 ±0.02 ±1.5 λ/5, λ/30
    ±0.05 ±1.5 λ/5, λ/30
    Lens 2 ±0.01 ±0.02 ±1 λ/5, λ/30
    ±0.01 ±1 λ/5, λ/30
    Lens 3 ±0.01 ±0.01 ±1 λ/5, λ/30
    ±0.01 ±1 λ/5, λ/30
    Lens 4 ±0.05 ±0.02 ±1.5 λ/5, λ/25
    ±0.05 ±1.5 λ/5, λ/25
    Lens 5 ±0.02 ±0.02 ±1 λ/5, λ/30
    ±0.02 ±1.5 λ/5, λ/30
    下载: 导出CSV

    表  5   光学系统装调公差

    Table  5   Tolerances for optical system setup

    Optical element Component spacing tolerance /mm Component eccentricity tolerance /mm Component angular tolerance /′
    Lens 1 ±0.02 ±0.02 ±3
    Lens 2 ±0.02 ±0.02 ±3
    Lens 3 ±0.02 ±0.02 ±3
    Lens 4 ±0.02 ±0.02 ±4
    Lens 5 ±0.02 ±0.01 ±4
    下载: 导出CSV

    表  6   Monte Carlo 500组数据分析结果

    Table  6   Monte Carlo 500 data analysis results

    Sample probability Average MTF
    10% >0.570
    20% >0.562
    50% >0.548
    80% >0.525
    90% >0.504
    下载: 导出CSV
  • [1] 陈潇. 大面阵长波红外光学无热化镜头的设计[J]. 红外技术, 2018, 40(11): 1061-1064. http://hwjs.nvir.cn/article/id/hwjs201811007

    CHEN Xiao. Design of long-wavelength infrared athermalization lens for large-array detector[J]. Infrared Technology, 2018, 40(11): 1061-1064. http://hwjs.nvir.cn/article/id/hwjs201811007

    [2] 汤天瑾. 无热化大相对孔径星敏感器光学系统设计[J]. 航天返回与遥感, 2011, 32(3): 36-42.

    TANG Tianjin. Design of athermalizing dual-band compound optical system[J]. Spacecraft Remote Sensing, 2011, 32(3): 36-42.

    [3] 王保华, 刘英, 孙强, 等. 折射/衍射混合长波红外连续变焦光学系统设计[J]. 红外与激光工程, 2013, 42(1): 148-153. DOI: 10.3969/j.issn.1007-2276.2013.01.027

    WANG Baohua, LIU Ying, SUN Qiang, et al. Optical design for refractive/diffractive long wavelength infrared continuous zoom system[J]. Infrared and Laser Engineering, 2013, 42(1): 148-153. DOI: 10.3969/j.issn.1007-2276.2013.01.027

    [4] 李福东. 小型星载红外相机的研制[J]. 航天返回与遥感, 2004, 25(1): 21-25.

    LI Fudong. Research and development of infrared camera onboard minisatellites[J]. Spaecraft Remote Sensing, 2004, 25(1): 21-25.

    [5] 何红星, 赵劲松, 唐晗, 等. 一种高性能双视场长波红外光学系统[J]. 红外技术, 2017, 39(5): 394-398. http://hwjs.nvir.cn/article/id/hwjs201705002

    HE Hongxing, ZHAO Jingsong, TANG Han, et al. High performance dual fields of view LWIR optical system[J]. Infrared Technology, 2017, 39(5): 394-398. http://hwjs.nvir.cn/article/id/hwjs201705002

    [6] 陈建发, 潘枝峰, 王合龙, 等. 基于制冷型探测器的双波段红外光学系统无热化设计[J]. 电光与控制, 2019, 26(10): 83-86.

    CHEN Jianfa, PAN Zhifeng, WANG Helong, et al. Athermalization design of a dual-band infrared optical system with cryogenic detector[J]. Electronics Optics & Control, 2019, 26(10): 83-86.

    [7] 单秋莎, 谢梅林, 刘朝晖, 等. 制冷型长波红外光学系统设计[J]. 中国光学, 2022, 15(1): 72-78.

    SHAN Qiusha, XIE Meilin, LIU Zhaohui, et al. Design of cooled long-wavelength infrared imaging optical system[J]. Chinese Optics, 2022, 15(1): 72-78.

    [8] 栗洋洋, 杨加强, 彭晴晴, 等. 制冷型红外双波段广角无热化光学系统设计[J]. 激光与红外, 2023, 23(5): 712-715.

    LI Yangyang, YANG Jiaqiang, PENG Qingqing, et al. Design of cooled infrared dual-band wide angle athermal optical system[J]. Laser and Infrared, 2023, 23(5): 712-715.

    [9] 王文生. 现代光学系统设计[M]. 北京: 国防工业出版社, 2008: 85-127.

    WANG Wensheng. Modern Optical System Design[M]. Beijing: Nation Defence Industry Press, 2008: 85-127.

    [10] 黄颖, 雷文平, 兰丽艳, 等. 遥感卫星CCD相机光学系统的热补偿设计[J]. 航天返回与遥感, 2002, 23(4): 38-40.

    HUANG Ying, LEI Wenping, LAN Liyan, et al. Optical system athermalization of remote sensing satellite CCD camera[J]. Spaecraft Remote Sensing, 2002, 23(4): 38-40.

    [11] 王远方舟, 白玉琢, 贾钰超, 等. 一种长波红外光学消热差系统设计[J]. 红外技术, 2012, 34(9): 531-534. http://hwjs.nvir.cn/article/id/hwjs201209009

    WANG Yuanfanghzou, BAI Yuzhuo, JIA Yuchao, et al. A design of FIR athermal system[J]. Infrared Technology, 2012, 34(9): 531-534. http://hwjs.nvir.cn/article/id/hwjs201209009

    [12] 吴海清, 王海霞, 赵新亮, 等. 双波段/双视场红外光学系统设计[J]. 红外技术, 2010, 32(11): 640-644. DOI: 10.3969/j.issn.1001-8891.2010.11.006

    WU Haiqing, WANG Haixia, ZHAO Xinliang, et al. Design of dual-band/dual-filed ir optical system[J]. Infrared Technology, 2010, 32(11): 640-644. DOI: 10.3969/j.issn.1001-8891.2010.11.006

  • 期刊类型引用(0)

    其他类型引用(4)

图(6)  /  表(6)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  11
  • PDF下载量:  28
  • 被引次数: 4
出版历程
  • 收稿日期:  2024-03-07
  • 修回日期:  2024-04-07
  • 刊出日期:  2025-03-19

目录

    /

    返回文章
    返回