Analysis and Modeling of IR Detection Systems for Complex Scenes
-
摘要:
仿真建模在红外探测系统性能设计、试验鉴定或效能推演等领域具有广泛的应用前景。为了满足复杂作战场景下红外探测系统性能仿真建模的迫切需求,在传统红外探测系统几何成像模型的基础上进一步分析了红外探测器阵列结构、采样效率、图像模糊等因素对探测的影响,另外还对复杂作战场景中自然杂波和激光压制以及假目标欺骗等人为干扰对于红外探测性能的影响进行了深入分析,并将这些影响因素引入红外探测系统的性能建模中,建立了一个能够适用于复杂作战场景的红外探测系统性能仿真推演的数学模型并将其集成于仿真推演系统中。仿真推演实例表明,该模型能够在复杂作战场景中逼真模拟红外探测系统的性能特征,对红外探测系统设计、性能评估以及使用效能仿真推演具有应用价值。
Abstract:Modeling and simulation have wide applications in the performance design, test evaluation, and combat simulation of IR detection systems. To meet the need for the performance modeling of IR detection systems in complex combat scenes, the effects of the detector array structure, sampling efficiency, image blur, and other factors on detection were analyzed based on the traditional geometric model, and the effects of clutter and human interference on detection in complex scenarios was analyzed. All these factors were introduced into the performance modeling of the IR detection system, and an IR detection system model that can be applied to complex scenes was established. Simulation examples show that the model can realistically simulate the performance characteristics of IR detection systems in complex combat scenes and has important application value in IR detection system design, performance evaluation, and combat test simulation.
-
Keywords:
- infrared detection /
- simulation and modelling /
- complex scene /
- interference factors
-
-
图 5 衍射受限系统的SNR:(a)几何成像条件和衍射条件SNR;(b)几何成像条件和衍射条件SNR之比;(c)图像中心位于像素中心与像素边角的SNR;(d)不同大气衰减下的SNR
Figure 5. SNR as a function of range for a diffraction-limited system. (a)geometric and diffraction SNR; (b)Ratio of diffraction to geometric; (c) pixel centre and corner SNR; (d) SNR with atmospheric attenuation
表 1 仿真模型参数
Table 1 Parameters of the simulation model
Parameters Values Target area/m2 12 Average target radiance/(W/Sr) 120 Average background radiance/(W/Sr) 8 α 0.05 τj 0 k 0.5 SNCR0 10 FN 1.5 Aperture diameter/cm 3 τo 0.9 Pixel size/μm 15 NEI/(pW/cm2) 0.47 Band/μm 8~10 -
[1] 马金龙, 马立元, 方丹. 仿真环境下导弹制导控制系统抗干扰性能测试方法[J]. 战术导弹技术, 2020, 31(3): 93-97. MA Jinlong, MA Liyuan, FANG Dan. Test scheme of anti-interference performance of missile guidance and control system in simulation environment[J]. Tactical Missile Technology, 2020, 31(3): 93-97.
[2] 白杨, 张成, 王博宇, 等. 机载末端红外对抗作战效能仿真研究[J]. 红外与激光工程, 2022, 51(11): 141-150. BAI Yang, ZHANG Cheng, WANG Boyu, et al. Simulation of airborne terminal infrared countermeasure operational effectiveness[J]. Infrared and Laser Engineering, 2022, 51(11): 141-150.
[3] 王霞, 白江辉, 金伟其, 等. 红外成像系统动态性能模型进展研究[J]. 红外技术, 2016, 38(12): 997-1004. DOI: 10.11846/j.issn.1001_8891.201612001 WANG Xia, BAI Jianghui, JIN Weiqi, et al. Development and research of infrared imaging system dynamic performance model[J]. Infrared Technology, 2016, 38(12): 997-1004. DOI: 10.11846/j.issn.1001_8891.201612001
[4] 曹淑艳, 唐善军, 范晋祥, 等. 红外探测系统建模仿真: 方法, 应用与问题[J]. 制导与引信, 2017, 38(1): 5-14. CAO Shuyan, TANG Shanjun, FAN Jingxiang, et al. Model and simulation for infrared detection system: approaches, applications and issues[J]. Guidance & Fuze, 2017, 38(1): 5-14.
[5] 王楚越, 杨利峰, 何道刚. 地面点源中波红外探测建模与验证研究[J]. 红外技术, 2023, 45(4): 357-363. http://hwjs.nvir.cn/article/id/cc40dae2-7c8e-435c-9a41-563ced9823c2 WANG Chuyue, YANG Lifeng, HE Daogang. Modeling and verification of ground point source for mid-wave infrared detection[J]. Infrared Technology, 2023, 45(4): 357-363. http://hwjs.nvir.cn/article/id/cc40dae2-7c8e-435c-9a41-563ced9823c2
[6] 徐振亚, 付奎生, 祁鸣, 等. 一种用于发射后截获的红外导引头探测距离估算方法[J]. 红外技术, 2020, 42(11): 1095-1102. http://hwjs.nvir.cn/article/id/dee58fea-97ff-474b-9816-c04a5c62dc81 XU Zhenya, FU Kuisheng, QI Ming, et al. Estimation method of infrared seeker detection range used for lock-on-after-launch[J]. Infrared Technology, 2020, 42(11): 1095-1102. http://hwjs.nvir.cn/article/id/dee58fea-97ff-474b-9816-c04a5c62dc81
[7] Duncan L Hickman. Target detection: the transition from unresolved to extended targets[C]//Proc of SPIE, 2021, 11866: 118660F.
[8] 袁磊, 王毕艺, 罗超, 等. 红外探测系统的激光辐照热效应仿真分析[J]. 强激光与粒子束, 2023, 35(2): 16-22. YUAN Lei, WANG Biyi, LUO Chao, et al. Simulation analysis of thermal effect of laser irradiation in infrared detection system[J]. High Power Laser and Particle Beams, 2023, 35(2): 16-22.
[9] 吴立民, 刘雨晨, 杨坤, 等. 复杂环境下弱信号红外探测系统灵敏度需求及实现方法研究[J]. 激光与红外, 2019, 49(4): 447-453. DOI: 10.3969/j.issn.1001-5078.2019.04.010 WU Limin, LIU Yuchen, YANG Kun, et al. Research on sensitivity requirement and implement method of weak signal infrared detecting system during complicated environment[J]. Laser & Infrared, 2019, 49(4): 447-453. DOI: 10.3969/j.issn.1001-5078.2019.04.010
[10] 郭冰涛, 韩琪, 惠进, 等. 基于识别距离的红外成像仿真验证方法[J]. 应用光学, 2022, 43(4): 719-725. GUO Bingtao, HAN Qi, HUI Jin, et al. Validation method of infrared imaging simulation based on recognition range[J]. Journal of Applied Optics, 2022, 43(4): 719-725.
[11] 刘明奇, 王思远, 何玉青, 等. 采用多种红外视距模型的子弹辐射探测系统作用距离分析[J]. 中国光学, 2015, 8(4): 636-643. LIU Mingqi, WANG Siyuan, HE Yuqing, et al. Bullet radiation detection range analysis based on multiple infrared visual range prediction models[J]. Chinese Optics, 2015, 8(4): 636-643.
[12] 孙新德, 薄树奎, 李琳琳. 基于背景估计的红外图像杂波抑制方法研究[J]. 激光与红外, 2011, 41(5): 586-590. SUN Xinde, BO Shukui, LI Linlin. Study of infrared image clutter suppression based on background estimation[J]. Laser & Infrared, 2011, 41(5): 586-590.
[13] 童锡良, 周峰. 针对点目标探测的背景杂波量化改进方法[J]. 红外技术, 2018, 40(4): 346-354. http://hwjs.nvir.cn/article/id/hwjs201804008 TONG Xiliang, ZHOU Feng. Improved clutter quantification method for point target detection[J]. Infrared Technology, 2018, 40(4): 346-354. http://hwjs.nvir.cn/article/id/hwjs201804008
[14] 苗锡奎, 张岩岫, 张恒伟, 等. 基于方向选择性机制的图像背景杂波建模方法[J]. 红外与激光工程, 2022, 51(6): 471-481. MIAO Xikui, ZHANG Yanxiu, ZHANG Hengwei, et al. Image background clutter modeling method based on directional selectivity mechanism[J]. Infrared and Laser Engineering, 2022, 51(6): 471-481.
[15] 赵丽, 杨国庆, 李周, 等. 红外系统点目标作用距离计算方法分析与实例[J]. 红外技术, 2022, 44(12): 1273-1277. http://hwjs.nvir.cn/article/id/2fd4abf4-f871-45f5-b54a-629d4b538cbc ZHAO Li, YANG Guoqing, LI Zhou, et al. Analysis and example of operating range calculation method for point target in infrared system[J]. Infrared Technology, 2022, 44(12): 1273-1277. http://hwjs.nvir.cn/article/id/2fd4abf4-f871-45f5-b54a-629d4b538cbc