Finite Element Simulation Analysis of Nondestructive Testing Parameters in Line Laser Scanning Thermal Imaging
-
摘要:
为进一步研究线激光扫描红外热成像无损检测技术,探究检测过程中可调参数及被检材料参数对热成像结果的影响,以获取最佳缺陷检测效果。本文使用COMSOL软件建立线激光扫描碳纤维复合材料的有限元分析模型,选取缺陷中心处及无缺陷处表面最大温差作为衡量检测效果的特征量,分析线激光长度、缺陷大小及缺陷深度对CFRP(Carbon Fibre Reinforced Plastics)热成像结果的影响规律,并分别对3个参数与检测效果的关系进行拟合。研究可为搭建激光扫描热成像检测系统和制定准确可靠的检测标准提供参考。
Abstract:To further study the nondestructive testing technology of line laser scanning IR thermography, the effects of adjustable parameters and tested material parameters on the thermal imaging results was explored to obtain the best defect detection results. COMSOL software was used to establish a finite element analysis model of line laser scanning carbon fiber composite materials, and the maximum surface temperature difference between the defect center and non-defect area was selected as the characteristic quantity to measure the detection effect. The influence of the linear laser length, defect size, and defect depth on the thermal imaging results of carbon fiber reinforced plastics (CFRP) was analyzed, and the relationship between the three and the detection effect was fitted. This study provides a reference for the establishment of a laser scanning thermal imaging detection system and accurate and reliable detection standards.
-
-
表 1 材料属性参数
Table 1 Material property parameters
Properties Density ρ/(kg/m3) Specific heat
capacity c/(J/(kg·K))Thermal conductivity
k/(W/(m·K))CFRP 1536 865 kx=4.2
ky=0.56
kz=0.56Air 1.186 1005 0.0261 表 2 缺陷直径与最大温差数据转换表
Table 2 Data conversion table of defect diameter and maximum temperature difference
Defect diameter D/mm Maximum temperature difference ΔTmax/℃ Original value Normalized value(x) Original value Normalized value(y) 15 1 46.92 1 10 0.6667 45.92 0.9787 5 0.3333 44.013 0.938 3 0.2 41.912 0.83999 表 3 缺陷深度与最大温差数据转换
Table 3 Data conversion table of defect depth and maximum temperature difference
Defect depth h/mm) Maximum temperature difference ΔTmax/℃ Original value Normalized value (x) Original value Normalized value (y) 3 1 4.118 0.1923 2 0.6667 4.591 0.2144 1 0.3333 8.535 0.3986 0.5 0.1667 21.411 1 表 4 线激光长度与最大温差数据转换表
Table 4 Line Laser length and maximum temperature difference data conversion table
Laser length l/mm Maximum temperature difference ΔTmax/℃ Original value Normalized value(x) Original value Normalized value(y) 80 1 1.033 0.3125 60 0.75 1.523 0.4607 50 0.625 2.125 0.6428 40 0.5 3.306 1 -
[1] 江海军, 陈力. 激光扫描热波成像技术及在航空领域的应用[J]. 红外技术, 2018, 40(6): 618-623. http://hwjs.nvir.cn/article/id/hwjs201806016 JIANG Haijun, CHEN Li. Laser scanning thermal wave imaging technology and its application in aviation field[J]. Infrared Technology, 2018, 40(6): 618-623. http://hwjs.nvir.cn/article/id/hwjs201806016
[2] 谷雨. 碳纤维增强聚合物复合材料在航空航天领域的研究进展[J]. 冶金与材料, 2023, 43(7): 118-120. GU Yu. Research progress of Carbon fiber reinforced polymer composites in aerospace field [J]. Metallurgy and Materials, 2019, 43(7): 118-120.
[3] 葛自力. 土木工程中碳纤维复合材料的运用研究[J]. 当代化工, 2015, 44(1): 117-119. GE Zili. The use of carbon fiber composites in civil engineering research [J]. Journal of Contemporary Works, 2015, 44(1) : 117-119.
[4] 韩善灵, 王涛, 光新杰, 等. CFRP在汽车轻量化与安全中的应用进展[J]. 复合材料科学与工程, 2024(2): 119-128. HAN Shanling, WANG Tao, GUANG Xinjie, et al. Application of CFRP in automotive lightweight and safety[J]. Composite Materials Science and Engineering, 2024(2): 119-128.
[5] 孙微, 贺福. 碳纤维复合材料在海底油田领域中的应用[J]. 高科技纤维与应用, 2009, 34(2): 35-37, 41. SUN Wei, HE Fu. Application of carbon fiber composites in subsea oilfield[J]. High-tech Fibers and Applications, 2009, 34(2): 35-37, 41.
[6] 李胤, 宋远佳, 刘春华. 基于热成像的CFRP损伤检测与演化规律研究综述[J]. 材料导报, 2022, 36(S1): 184-192. LI Yin, SONG Yuanjia, LIU Chunhua. Review of damage detection and evolution of CFRP based on thermal imaging[J]. Materials Review, 2022, 36(S1): 184-192.
[7] Burrows S E, Dixon S, Pickering S G, et al. Thermographic detection of surface breaking defects using a scanning laser source[J]. NDT & E International, 2011, 44(7): 589-596.
[8] WEI Jiacheng, WANG Fei, LIU Junyan, et al. A laser arrays scan thermography (LAsST) for the rapid inspection of CFRP composite with subsurface defects [J]. Composite Structures, 2019, 226(6): 1-8.
[9] 杨正伟, 谢星宇, 李胤, 等. 激光扫描热成像无损检测关键参数影响分析[J]. 红外与激光工程, 2019, 48(11): 91-101. YANG Zhengwei, XIE Xingyu, LI Yin, et al. Influence analysis of key parameters of non-destructive testing by laser scanning thermal imaging [J]. Infrared and Laser Engineering, 2019, 48(11): 91-101.
[10] 何志艺. 碳纤维复合材料联动扫描激光热成像缺陷检测技术研究[D]. 长沙: 湖南大学, 2021. HE Zhiyi. Study on defect detection technology of carbon fiber composite by laser thermal imaging with linkage scanning[D]. Changsha: Hunan university, 2021.
[11] 王禄祥, 张志杰, 陈昊泽, 等. 线激光扫描热成像无损检测参数仿真[J]. 红外技术, 2023, 45(10): 1038-1044. http://hwjs.nvir.cn/article/id/61079696-3fb7-4449-a71c-baae1da0f020 WANG Luxiang, ZHANG Zhijie, CHEN Haoze, et al. Parameter simulation of nondestructive testing in line laser scanning thermal imaging[J]. Infrared Technology, 2023, 45(10): 1038-1044. http://hwjs.nvir.cn/article/id/61079696-3fb7-4449-a71c-baae1da0f020
[12] 姚仲鹏, 王瑞君. 传热学[M]. 北京: 北京理工大学出版社, 1995. YAO Zhongpeng, WANG Ruijun. Heat Transfer[M]. Beijing: Beijing Institute of Technology Press, 1995.
[13] 黄雅林. 基于红外热成像的CFRP加固混凝土缺陷检测研究[D]. 长沙: 湖南大学, 2022. HUANG Yalin. Research on defect detection of CFRP reinforced concrete based on infrared thermal imaging [D]. Changsha: Hunan University, 2022.
[14] JIN Guofeng, ZHANG Wei, SHI Jun, et al. Numerical analysis of influencing factors and capability for thermal wave NDT in liquid propellant tank corrosion damage detection[J]. Measurement Science Review, 2013, 13(4): 214-222.
[15] LI T, Almond P D, Rees S A D. Crack imaging by scanning laser-line thermography and laser-spot thermography[J]. Measurement Science and Technology, 2011, 22(3): 407-414.
[16] Nissim Y I, Lietoila A, Gold R B, et al. Temperature distributions produced in semiconductors by a scanning elliptical or circular cw laser beam[J]. J. Appl. Phys., 1980, 51(1): 274-279.
[17] YU Peng, ZHOU Weidong, YU Shengkai, et al. Laser-induced local heating and lubricant depletion in heat assisted magnetic recording systems[J]. International Journal of Heat and Mass Transfer, 2013, 59: 36-45.