用于激光软钎焊温度测量的高精度红外辐射测温装置

李明超, 闫宽, 张聪, 胡记伟, 欧锴, 陈绪兵

李明超, 闫宽, 张聪, 胡记伟, 欧锴, 陈绪兵. 用于激光软钎焊温度测量的高精度红外辐射测温装置[J]. 红外技术, 2025, 47(1): 108-114.
引用本文: 李明超, 闫宽, 张聪, 胡记伟, 欧锴, 陈绪兵. 用于激光软钎焊温度测量的高精度红外辐射测温装置[J]. 红外技术, 2025, 47(1): 108-114.
LI Mingchao, YAN Kuan, ZHANG Cong, HU Jiwei, OU Kai, CHEN Xubing. High-precision IR Radiation Temperature Measurement Device for Laser Soldering Temperature Measurement[J]. Infrared Technology , 2025, 47(1): 108-114.
Citation: LI Mingchao, YAN Kuan, ZHANG Cong, HU Jiwei, OU Kai, CHEN Xubing. High-precision IR Radiation Temperature Measurement Device for Laser Soldering Temperature Measurement[J]. Infrared Technology , 2025, 47(1): 108-114.

用于激光软钎焊温度测量的高精度红外辐射测温装置

基金项目: 

武汉市发展和改革委员会省级服务业发展引导资金项目 2205-420118-89-04-487510

姑苏领军人才计划 ZXL2022518

详细信息
    作者简介:

    李明超(1998-), 男, 硕士研究生, 研究方向: 激光技术。E-mail: boom662@163.com

    通讯作者:

    张聪(1994-), 男, 博士研究生, 讲师, 研究方向: 先进制造技术。E-mail: zhangcong94@foxmail.com

  • 中图分类号: TN219

High-precision IR Radiation Temperature Measurement Device for Laser Soldering Temperature Measurement

  • 摘要:

    在激光软钎焊加工过程中,实时精准测量焊点温度并调节半导体激光器的输出功率对于保证焊接质量至关重要。为避免因温度测量误差过大或测量速度过慢导致的焊点焦灼、虚焊和假焊等故障,本文设计了用于激光软钎焊的高精度红外辐射测温装置。首先描述了红外辐射测温装置的原理,并阐述了红外辐射信号转换电路设计方法,其次介绍了本文中所用的无限脉冲响应Butterworth型滤波器信号处理方法——无限脉冲响应滤波器Butterworth型;最后,通过实验分析并验证了本装置的性能。实验表明,本装置适用于激光软钎焊焊点温度的非接触测量,在标准黑体炉70~260℃范围内测试区间,误差基本处于±2℃之内,最大误差为2%,在激光软钎焊加工过程中,整体平均误差小于0.8%,可广泛应用于激光软钎焊领域。

    Abstract:

    In the laser soldering process, real-time measurement of the solder joint temperature and adjustment of the output power of the semiconductor laser are crucial for ensuring welding quality. To avoid faults such as solder scorching, virtual soldering, and false soldering caused by excessive temperature measurement errors or slow measurement speeds, a high-precision IR radiation temperature measurement device is designed. First, the principles of IR radiation temperature measurement are introduced, and the design method of the IR radiation signal conversion circuit is explained. Second, the primary signal processing method used in this study, which is a Butterworth-type infinite impulse response filter, is introduced. Finally, the performance of the device is validated through experimental analysis. The experiments demonstrate that the IR radiation temperature measurement device designed in this study is suitable for non-contact measurement of solder joint temperature in laser soldering, with a maximum error of 2℃ within the test range of 70-260℃ in a standard blackbody furnace. During the laser soldering process, the highest temperature error is less than 0.6%, making it widely applicable to the field of laser soldering.

  • 图  1   红外辐射测温装置系统图

    Figure  1.   System diagram of infrared radiation temperature device

    图  2   红外辐射测温装置实物图

    Figure  2.   System of infrared radiation temperature measurement device

    图  3   光伏转换电路原理图

    Figure  3.   Schematic of photovoltaic conversion circuit

    图  4   三种十阶滤波器频率响应曲线

    Figure  4.   Three types of tenth order filter frequency response curves

    图  5   Butterworth滤波器各阶数与过渡带滤波性能

    Figure  5.   Butterworth filter order and transition band

    图  6   十阶Butterworth滤波器增益仿真

    Figure  6.   Gain simulation of tenth order Butterworth

    图  7   光路示意图

    Figure  7.   Schematic diagram of optical path

    图  8   系统三维光路图

    Figure  8.   System 3D optical path diagram

    图  9   激光软钎焊测温实验平台

    Figure  9.   Laser soldering temperature test platform

    图  10   激光软钎焊焊点温度测量曲线

    Figure  10.   Laser soldering temperature test curves

    表  1   使用滤波器前后红外辐射黑体炉测温结果分析

    Table  1   Analysis of infrared radiation blackbody temperature measurement results before and after filter correction

    Test num/℃ Blackbody temp/℃ Temp./℃(unfiltered) Error Temp./℃(filtered) Error
    1 70 56.6 -13.4 68.3 -1.7
    2 80 66.1 -13.9 77.8 -2.2
    3 90 79.5 -10.5 91.2 1.2
    4 100 90.0 -10 101.7 1.7
    5 110 96.0 -14 108.7 -1.3
    6 120 102.1 -17.8 122.8 2.8
    7 130 118.6 -11.4 130.3 0.3
    8 140 126.2 -13.8 141.2 1.2
    9 150 135.5 -14.5 148.2 -1.8
    10 160 150.7 -9.3 161.4 1.4
    11 170 158.8 -11.2 170.5 0.5
    12 180 170.7 -9.3 181.4 1.4
    13 190 178.5 -11.5 190.2 0.2
    14 200 187.7 -12.3 199.4 -0.6
    15 210 199.3 -10.7 211.0 1
    16 220 209.9 -10.1 221.7 1.7
    17 230 279.6 -10.4 231.3 1.3
    18 240 229.4 -10.6 241.1 1.1
    19 250 238.2 -11.8 249.9 -0.1
    20 260 248.7 -11.3 260.4 0.4
    下载: 导出CSV
  • [1] 张丽丽, 孙树峰, 王茜, 等. 激光微纳连接技术研究进展[J]. 激光与光电子学进展, 2022, 59(3): 0300003.

    ZHANG Lili, SUN Shufeng, WANG Xi, et al. Research progress of laser micro-nano connection technology[J]. Laser Optoelectronics Progress, 2022, 59(3): 0300003.

    [2]

    Adawiyah M A R, Syafiq H, Ammar M D, et al. The interfacial reaction between Sn-Ag-Cu (SAC)/Cu during laser soldering[J]. Lasers in Engineering, 2022(6): 51.

    [3]

    Alharbi A M, Othman M I A, Abd-Elaziz E M. 2-D analysis of generalized thermoelastic porous medium under the effect of laser pulse and micro temperature[J]. International Journal of Structural Stability and Dynamics, 2021, 21(9): 2150126. DOI: 10.1142/S0219455421501261

    [4]

    Kim J O, Jung J P, Lee J H, et al. Effects of laser parameters on the characteristics of a Sn-3.5 wt. % Ag solder joint[J]. Metals & Materials International, 2009, 15(1): 119-123.

    [5]

    HE Q, WEI H, CHEN J S, et al. Analysis of hot cracking during lap joint laser welding processes using the melting state-based thermomechanical modeling approach[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94: 4373-4386. DOI: 10.1007/s00170-017-1157-5

    [6]

    Schmidt J, Rutz F, Wrl A, et al. Low dark current in mid-infrared type-II superlattice heterojunction photodiodes[J]. Infrared Physics & Technology, 2017, 85: 378-381.

    [7]

    Torregrosa Penalva G, Asensio-López A, Ortega-González F, et al. PAE improvement and compensation of small‐signal gain drift due to temperature on power amplifiers through active biasing[J]. Microwave and Optical Technology Letters, 2003, 38(5): 389-392. DOI: 10.1002/mop.11069

    [8]

    Vincent G, Guy L, Philippe R, et al. Improving the power line communication signal-to-noise ratio during a resistive load commutation[J]. Journal of Communications, 2009, 4(2): 126-132.

    [9]

    Lee J M, Choi Y, Lee J R. Laser structural training, artificial intelligence-based acoustic emission localization and structural/noise signal distinguishment in a thick FCEV fuel tank[J]. International Journal of Hydrogen Energy, 2022(6): 47.

    [10]

    Mahata R MD. Optimal design of fractional order low pass Butterworth filter with accurate magnitude response[J]. Digital Signal Processing, 2018, 72: 96-114.

    [11] 张立东, 苗长云, 厉振宇, 等. 带式输送机本质安全型红外测温仪[J]. 红外技术, 2021, 43(1): 89-95. http://hwjs.nvir.cn/cn/article/id/d041ffaf-1f80-4758-94e7-df6e824d80e6

    ZHANG Lidong, MIAO Changyun, LI Zhenyu, et al. Intrinsically safe infrared thermometer for Belt Conveyors[J]. Infrared Technology, 2021, 43(1): 89-95. http://hwjs.nvir.cn/cn/article/id/d041ffaf-1f80-4758-94e7-df6e824d80e6

    [12]

    Colaizzi P D, OShaughnessy Susan A, Evett S R. Calibration and tests of commercial wireless infrared thermometers[J]. Applied Engineering in Agriculture, 2018, 34(4): 647-658.

    [13]

    Montambaux G. Generalized Stefan–Boltzmann Law[J]. Foundations of Physics, 2018, 48(4): 395-410.

    [14]

    Cuenca J, Sobrino J A. Experimental measurements for studying angular and spectral variation of thermal infrared emissivity[J]. Applied Optics, 2004, 43(23): 4598-4602.

    [15] 邵秀梅, 龚海梅, 李雪, 等. 高性能短波红外InGaAs焦平面探测器研究进展[J]. 红外技术, 2016, 38(8): 629-635. http://hwjs.nvir.cn/article/id/hwjs201608001

    SHAO Xiumei, GONG Haimei, LI Xue, et al. Developments of high performance short-wave infrared InGaAs focal plane detectors[J]. Infrared Technology, 2016, 38(8): 629-635. http://hwjs.nvir.cn/article/id/hwjs201608001

    [16]

    Colaizzi P D, O′ Shaughnessy Susan A, Evett S R. Calibration and tests of commercial wireless infrared thermometers[J]. Applied Engineering in Agriculture, 2018, 34(4): 647-658.

    [17] 苏玉辉, 龚晓霞, 雷胜琼, 等. 噪声作为红外探测器可靠性评价的探讨[J]. 红外技术, 2009, 31(9): 509-512. DOI: 10.3969/j.issn.1001-8891.2009.09.003

    SU Yuhui, GONG Xiaoxia, LEI Shengqiong, et al. Discussion of reliability evaluation on infrared photovoltaic detector by noise[J]. Infrared Technology, 2009, 31(9): 509-512. DOI: 10.3969/j.issn.1001-8891.2009.09.003

    [18] 王长青, 李爱军, 王伟. Butterworth滤波器在飞行控制系统设计中的应用[J]. 飞行力学, 2009, 27(1): 74-76, 96.

    WANG Changqing, LI Aijun, WANG Wei. Application of butterworth filter to design of flight control systems[J]. Flight Dynamics, 2009, 27(1): 74-76, 96.

    [19]

    Chavan M S, Agarwala R A, Uplane M D. Design and implementation of digital FIR equiripple notch filter on ECG signal for removal of power line interference[J]. WSEAS Transactions on Signal Processing, 2008, 4(4): 221-230.

    [20]

    PAN D, JIANG Z, Maldague X, et al. Research on the influence of multiple interference factors on infrared temperature measurement[J]. IEEE Sensors Journal, 2021, 21: 10546-10555.

图(10)  /  表(1)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  4
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-11
  • 修回日期:  2023-12-19
  • 刊出日期:  2025-01-19

目录

    /

    返回文章
    返回