弹载红外探测器对拦截弹的探测能力分析

张雪松, 吴楠, 王锋, 储思思, 李东泽

张雪松, 吴楠, 王锋, 储思思, 李东泽. 弹载红外探测器对拦截弹的探测能力分析[J]. 红外技术, 2024, 46(5): 599-607.
引用本文: 张雪松, 吴楠, 王锋, 储思思, 李东泽. 弹载红外探测器对拦截弹的探测能力分析[J]. 红外技术, 2024, 46(5): 599-607.
ZHANG Xuesong, WU Nan, WANG Feng, CHU Sisi, LI Dongze. Analysis of Detection Ability of Missile-Borne Infrared Detector to Interceptor[J]. Infrared Technology , 2024, 46(5): 599-607.
Citation: ZHANG Xuesong, WU Nan, WANG Feng, CHU Sisi, LI Dongze. Analysis of Detection Ability of Missile-Borne Infrared Detector to Interceptor[J]. Infrared Technology , 2024, 46(5): 599-607.

弹载红外探测器对拦截弹的探测能力分析

详细信息
    作者简介:

    张雪松(1990-),男,辽宁阜新人,硕士,工程师,研究方向为空间目标信息获取与处理。E-mail: zhangxuesong070595@163.com

    通讯作者:

    李东泽(1985-),女,吉林四平人,博士,助理研究员,研究方向为无人系统技术。E-mail: dongzeli1010@126.com

  • 中图分类号: TJ760.1

Analysis of Detection Ability of Missile-Borne Infrared Detector to Interceptor

  • 摘要:

    在弹载平台上加装红外探测器,从而对拦截弹进行探测和预警,是提高弹载平台突防和生存能力的创新性手段。本文针对弹载红外探测器对拦截弹的探测能力,分析了拦截弹的红外辐射特性,并推测了用于探测拦截弹的红外探测器参数。同时,根据探测概率和输入信噪比的关系以及基于辐射差的信噪比模型推导了探测概率模型。在此基础上,分析了对末段、中段防御拦截弹的探测需求,从探测概率、作用距离两个方面对弹载红外探测器的探测能力进行了分析。分析结果表明:弹载红外探测器对末段拦截弹具有较强的探测能力,对于中段拦截弹只有在日照区能够保证探测需求,而在日影区只在一定探测视角下具备探测能力。

    Abstract:

    The addition of infrared detectors on a ballistic platform, thus detecting and warning the interceptor, is an innovative method to improve the surprise defense and survival capability of the ballistic platform. In this study, the infrared radiation characteristics of the interceptor are analyzed and the parameters of the infrared detector used to detect the interceptor are speculated with respect to the detection capability of the ballistic infrared detector. A detection probability model is derived based on the relationship between the detection probability and input signal-to-noise ratio and a signal-to-noise ratio model is derived based on the radiation difference. Therefore, the detection requirements of the late and mid-range defense interceptors are analyzed, and the detection capability of the bullet-borne infrared detector is analyzed in terms of the detection probability and action distance. The results of the analysis show that the ballistic infrared detector has a strong detection capability for the late stage interceptor; it can guarantee detection in the sunlight area for the middle stage interceptor, whereas only a certain detection angle has detection capability in the sun-shadow area.

  • 图  1   瞬时视场角-焦距变化曲线

    Figure  1.   Instantaneous field of view-focal length variation curve

    图  2   末段防御拦截弹的探测概率

    Figure  2.   Detection probability of terminal defense interception missile

    图  3   中段防御拦截弹的探测概率

    Figure  3.   Detection probability of intermediate defense interception missile

    图  4   7.5~9.5 μm波段探测距离与探测概率的关系

    Figure  4.   The relationship between detection distance and detection probability in the 7.5-9.5 μm band

    图  5   助推起始时对末段防御拦截弹的作用距离

    Figure  5.   The operating distance of the terminal defense interception missile at the beginning of the booster thrust

    图  6   助推结束时对末段防御拦截弹的作用距离

    Figure  6.   The operating distance of the terminal defense interception missile at the end of the boost

    图  7   对制导段末段防御拦截弹的作用距离

    Figure  7.   The operating distance of the terminal defense interception missile at the guidance phase

    图  8   对中段防御拦截弹的作用距离

    Figure  8.   The operating distance for intermediate defense interception missile

    图  9   7.5~9.5 μm波段作用距离分析

    Figure  9.   Analysis of the operating range in the 7.5-9.5 μm band

    表  1   弹载红外探测器参数

    Table  1   Parameters of missile-borne infrared detector

    Parameters MWIR LWIR
    Operating band /μm 3.5~4.8 7.5~9.5
    Resolution 640×512 640×512
    Pixel size/μm 20 20
    Integration time/ms 8 8
    Specific detectivity D*/(m·Hz1/2·W-1) 3×109 7×108
    Focal length/m 0.5 0.5
    Optical aperture/m 0.25 0.25
    IFOV/μrad 40 40
    下载: 导出CSV

    表  2   红外探测器探测概率与信噪比关系

    Table  2   The relationship between detection probability and SNR of infrared detector

    Pd 1.0 0.95 0.9 0.8 0.7 0.6
    fSNR 7.56 5.91 5.55 5.1 4.79 4.52
    Pd 0.5 0.4 0.3 0.2 0.1 0.01
    fSNR 4.26 4.01 3.74 3.42 2.98 1.94
    下载: 导出CSV

    表  3   导弹防御系统性能指标

    Table  3   Performance indicators of missile defense system

    Parameters Terminal defense system Midcourse defense system
    Missile airframe size/m 6×0.37 16.6×1.3
    Warhead size/m 2.3×0.37 1.4×0.6
    Capture distance/km 50 200
    Intercept distance/km 200 5000
    Intercept speed/(km/s) 2.5~2.8 2.7~3.2
    Intercept height/km 40~150 2000
    下载: 导出CSV

    表  4   不同探测概率与虚警概率下的最小可探测信噪比

    Table  4   Minimum detectable SNR under different detection probabilities and false alarm probabilities

    SNR 5 6 7
    Pfa 10-3 10-4 10-5 10-3 10-4 10-5 10-3 10-4 10-5
    Pd 0.972 0.900 0.769 0.998 0.989 0.958 0.999 0.999 0.997
    下载: 导出CSV

    表  5   拦截弹助推段起始时仿真参数

    Table  5   Simulation parameters at the beginning of the boost phase of interceptor missile

    Parameters Temperature/K Radiating area/m2 Infrared radiation/(W/m2·sr)
    3.5~4.8μm 7.5~9.5μm
    Envelope 390 0.11(head-on)
    2.2(side-looking)
    14.02 56.32
    Tail nozzle 1800 - 20009.53 3202.99
    Tail flame and exhaust column 990 0.86(head-on)
    12.98(side-looking)
    1944.42 605.09
    Ground background 298 - 1.17 17.31
    Atmospheric background 290 - 0.90 15.50
    下载: 导出CSV

    表  6   拦截弹助推段结束时仿真参数

    Table  6   Simulation parameters at the end of the boost phase of interceptor missile

    Parameters Temperature /K Radiating area /m2 Infrared radiation/(W/m2·sr)
    3.5~4.8μm 7.5~9.5μm
    Envelope 1958.77 0.11(head-on)
    0.84(side-looking)
    21494.21 3240.26
    Ground background 298 - 1.17 17.31
    Atmospheric background 230 - 0.05 3.39
    下载: 导出CSV

    表  7   拦截弹制导段仿真参数

    Table  7   Simulation parameters at the guidance phase of interception missile

    Parameters Temperature/K Radiating area /m2 Infrared radiation/(W/m2·sr)
    3.5~4.8μm 7.5~9.5μm
    Envelope 1130 0.11(head-on)
    0.84(side-looking)
    4948.77 1269.52
    Ground background 298 - 1.17 17.31
    Atmospheric background 225 - 0.03 2.88
    下载: 导出CSV

    表  8   拦截弹制导段仿真参数

    Table  8   Simulation parameters at the guidance phase of interception missile

    Parameters Temperature/K Radiating area /m2 Infrared radiation/(W/m2·sr)
    3.5~4.8μm 7.5~9.5μm
    Envelope 400(sunshine)
    200(sun shadow)
    0.28(head-on)
    0.81(side-looking)
    17.41
    0.0045
    62.89
    0.91
    Deep space background 4 0 $ 9.978 \times {10^{ - 164}} $
    下载: 导出CSV
  • [1]

    CHEN R, Speyer J, Lianos D. Terminal and boost phase intercept of ballistic missile defense[C]//AIAA Guidance, Navigation and Control Conference and Exhibit, 2008: 1-13.

    [2]

    Tidrow M Z, Dyer W R. Infrared sensors for ballistic missile defense[J]. Infrared Physics & Technology, 2001, 42(3-5): 333-336.

    [3] 谢飞, 周德召, 胡磊力, 等. 红外搜索跟踪系统探测距离缩比测试方法[J]. 电光与控制, 2019, 26(4): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201904018.htm

    XIE Fei, ZHOU Dezhao, HU Leili, et al. A method for testing detection range of IRST with scale model[J]. Electronics Optics & Control, 2019, 26(4): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201904018.htm

    [4] 杨港, 郭迎辉, 蒲明博, 等. 基于相关性选择的微型计算光谱探测技术[J]. 光电工程, 2022, 49(10): 220130. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202210003.htm

    YANG Gang, GUO Yinghui, PU Mingbo, et al. Miniature computational spectral detection technology based on correlation value selection[J]. Opto-Electron Eng, 2022, 49(10): 220130. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202210003.htm

    [5] 霍宏伟. 基于多平台联合探测的巡航导弹机动段轨迹跟踪方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    HUO Hongwei. Research on Tracking Method of Maneuvering Section of Cruise Missile Based on Multi-Platform Cooperative Detection[D]. Harbin: Harbin Institute of Technology, 2018.

    [6] 郑建成, 谭贤四, 曲智国, 等. 高超声速/常规巡航导弹预警探测特征比较[J]. 现代防御技术, 2022, 50(4): 116-123. https://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ202204011.htm

    ZHENG Jiancheng, TAN Xiansi, QU Zhiguo, et al. Comparison of early warning detection characteristics between hypersonic cruise missile and cruise missile[J]. Modern Defense Technology, 2022, 50(4): 116-123. https://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ202204011.htm

    [7] 何苹, 王莹莹, 岳韶华. 先进红外传感器对隐身飞机作用距离估算研究[J]. 红外技术, 2020, 42(9): 899-904. http://hwjs.nvir.cn/cn/article/id/hwjs202009013

    HE Ping, WANG Yingying, YUE Shaohua. Operating range of the advanced infrared detector for the stealth aircraft[J]. Infrared Technology, 2020, 42(9): 899-904. http://hwjs.nvir.cn/cn/article/id/hwjs202009013

    [8]

    LU L, SHENG W, JIANG W, et al. Estimating detection range of ballistic missile in infrared system based on near space platform[C]//SPIE/COS Photonics Asia Conference Air Force Early Warning Academy, 2018, 10826: 108261R.

    [9] 赵丽, 杨国庆, 李周, 等. 红外系统点目标作用距离计算方法分析与实例[J]. 红外技术, 2022, 44(12): 1273-1277. http://hwjs.nvir.cn/cn/article/id/2fd4abf4-f871-45f5-b54a-629d4b538cbc?viewType=HTML

    ZHAO Li, YANG Guoqing, LI Zhou, et al. Analysis and example of operating range calculation method for point target in infrared system[J]. Infrared Technology, 2022, 44(12): 1273-1277. http://hwjs.nvir.cn/cn/article/id/2fd4abf4-f871-45f5-b54a-629d4b538cbc?viewType=HTML

    [10] 赵秀娜. 机动弹头的智能规避策略研究[D]. 长沙: 国防科学技术大学, 2006.

    ZHAO Xiuna. Research on Intelligent Evasion Strategy of Maneuvering Warhead[D]. Changsha: National University of Defense Technology, 2006.

    [11] 邵亨武, 李红伟. 弹道导弹机动突防的拦截模型研究[J]. 指挥控制与仿真, 2023, 45(4): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-QBZH202304011.htm

    SHAO Hengwu, LI Hongwei. Interceptor model based on ballistic missile maneuvering penetration[J]. Command Control & Simulation, 2023, 45(4): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-QBZH202304011.htm

    [12] 宋万禄, 王延新, 张爱珍, 等. 弹道导弹弹载红外告警装置技术分析[J]. 红外与激光工程, 2014, 43(8): 2466-2470. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201408013.htm

    SONG Wanlu, WANG Yanxin, ZHANG Aizhen, at al. Technical analysis of BM-borne IR warning system[J]. Infrared and Laser Engineering, 2014, 43(8): 2466-2470. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201408013.htm

    [13] 韩宇萌, 贾晓洪, 梁晓庚. 红外成像导弹目标截获概率[J]. 航空学报, 2016, 37(10): 3101-3109. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201610021.htm

    HAN Yumeng, JIA Xiaohong, LIANG Xiaogeng. Target acquisition probability of infrared imaging missile[J]. Acta Aeronautica ET Astronautica Sinica, 2016, 37(10): 3101-3109. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201610021.htm

    [14] 刘铭, 邢伟荣, 刘京生, 等. 中/长波双色二类超晶格红外探测器技术[J]. 激光与红外, 2022, 52(12): 1843-1847. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202212015.htm

    LIU Ming, XING Weirong, LIU Jingsheng, et al. Mid-wave and long-wave dual-colour type-Ⅱ superlattice infrared detector technology[J]. Laser & Infrared, 2022, 52(12): 1843-1847. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202212015.htm

    [15] 李记新, 王霞. 反临近空间助推滑翔高超声速目标制导研究[J]. 航空兵器, 2018(3): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201803005.htm

    LI Jixin, WANG Xia. Study of guidance for near space boost-gliding hypersonic aircraft interception[J]. Aero Weaponry, 2018(3): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201803005.htm

    [16] 李琳. 红外成像目标信噪比的估算模型[D]. 北京: 中国电子科技集团公司电子科学研究院, 2018.

    LI Lin. Estimating Model on SNR of Infrared Imaging Target[D]. Beijing: China Academic of Electronics and Information Technology, 2018.

    [17] 徐丹丹, 寇朝辉, 闫大庆. 美国先进战区防御导弹动力装置研究[J]. 飞航导弹, 2012(7): 72-77. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201207018.htm

    XU Dandan, KOU Chaohui, YAN Daqing. Research on the missile power plant of American advanced theater defense[J]. Aerodynamic Missile Journal, 2012(7): 72-77. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201207018.htm

    [18] 秦琰华, 郭涛涛, 张鹏飞, 等. 红外图像导引头视场与识别概率关系[J]. 弹箭与制导学报, 2011, 31(4): 31-32, 36. https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201104009.htm

    QIN Yanhua, GUO Taotao, ZHANG Pengfei, et al. The research on relationship between field of view and identify probability for infrared guided seeker[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(4): 31-32, 36. https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201104009.htm

    [19] 禄晓飞, 盛捷. 弹道导弹在飞行过程中的表面温度研究进展[J]. 红外, 2016, 37(1): 1-6, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201601001.htm

    LU Xiaofei, SHENG Jie. Review of surface temperature of ballistic missile in flight[J]. Infrared, 2016, 37(1): 1-6, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201601001.htm

    [20] 赵晨皓, 苏伟, 赵永, 等. 空天平台红外探测巡航导弹建模与仿真[J]. 红外技术, 2013, 35(9): 575-580. http://hwjs.nvir.cn/cn/article/id/hwjs201309010

    ZHAO Chenhao, SU Wei, ZHAO Yong, et al. The modeling and simulation of air-space platform infrared detection against cruise missile[J]. Infrared Technology, 2013, 35(9): 575-580. http://hwjs.nvir.cn/cn/article/id/hwjs201309010

    [21] 张义, 赵竞全, 钟宇洲, 等. 沙漠背景下导弹红外辐射特性分析[J]. 红外技术, 2017, 39(7): 653-658. http://hwjs.nvir.cn/cn/article/id/hwjs201707013

    ZHANG Yi, ZHAO Jingquan, ZHONG Yuzhou, et al. Infrared radiation characteristics of missiles in desert background[J]. Infrared Technology, 2017, 39(7): 653-658. http://hwjs.nvir.cn/cn/article/id/hwjs201707013

图(9)  /  表(8)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  19
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-13
  • 修回日期:  2023-03-08
  • 网络出版日期:  2024-05-23
  • 刊出日期:  2024-05-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭