Design of LWIR Continuous Zoom Optical System with Variable Diaphragm
-
摘要:
非制冷长波连续变焦光学系统由于相对孔径大导致小型化和无热化设计困难,本文采用可变光阑约束物镜尺寸压缩系统总长,实现长波640×512非制冷连续变焦光学系统轻小型化设计。通过材料合理配置及主动补偿实现5片透镜的8.5×连续变焦光学系统消热设计。该系统F#恒定1.2、工作波段为8~12 μm、视场变焦范围为30°×24°~3.5°×2.8°、系统总长187.5 mm,该连续变焦光学系统重量轻、总长短、透过率高、在-40℃~+60℃温度范围全视场成像质量良好。
Abstract:Miniaturization and athermalization design of uncooled long-wave infrared (LWIR) continuous zoom optical systems is difficult given the large relative aperture. The lightweight and miniaturization design of an LWIR continuous zoom optical system with an uncooled focal plane array detector for 640×512 pixels was realized by restraining the object lens size and total length of the system by using a variable diaphragm. Through reasonable material configuration and an active compensation method, the athermalization design of a continuous zoom optical system with a zoom ratio of 8.5 and five lenses was achieved. The system F number is constant at 1.2, the spectral range is 8 μm to 12 μm, the field of view (FOV) ranges from 30°×24° to 3.5°×2.8°, and the total length of the system is 187.5 mm. This optical system exhibits light weight, short total length, and high transmittance. Within the temperature range of -40℃ to +60℃, the optical system affords good image quality in the full field of view during zooming.
-
-
表 1 探测器参数
Table 1 Parameters of detector
Detector VOx Array scale 640×512 Pixel size/μm 12 NETD/mK ≤40 Spectral response/μm 45518 Thermal response/ms 10 Working temperature/℃ -40 to 80 表 2 光学系统设计指标
Table 2 Parameters of optical system design
Working waveband/μm 8 to 12 Zoom ratio 8.5:1 Field of view/° 30×24 to 3.5×2.8 F# 1.2 Focal length/mm 14.3 to 125 Transmittance/% > 72 Working temperature/℃ -40 to 60 表 3 光学系统间隔初始参数
Table 3 Parameters of the optical system
mm Focal length 125 95.67 50.84 24.3 13 f1′/f2′ spacing 78.5 73.97 60.4 37.74 10.6 f2′/f3′ spacing 12.08 20.95 42.8 72.52 104 f3′/f4′ spacing 37.58 33.24 24.9 17.9 13.6 -
[1] 吴海清, 王朋. 小型化大面阵非制冷红外连续变焦光学系统设计[J]. 红外, 2020, 41(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202002001.htm WU Haiqing, WANG Peng. Design of miniaturized large-format uncooled infrared continuous zoom optical system[J]. Infrared, 2020, 41(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202002001.htm
[2] 唐玉凤, 毛珊, 宋逸辰, 等. 非制冷长波红外连续变焦光学系统的一种无热化设计[J]. 光学学报, 2024, 44(7): 0722002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202407015.htm TANG Yufeng, MAO Shan, SONG Yichen, et al. Athermalization design of uncooled long waveband infrared continuous zoom optical system[J]. Acta Optica Sinica, 2024, 44(7): 0722002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202407015.htm
[3] 陶郅, 王敏, 肖维军. 20倍非制冷长波红外连续变焦光学系统设计[J]. 红外, 2017, 38(5): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201705004.htm TAO Zhi, WANG Min, XIAO Weijun. Design of a 20×uncooled thermal long wavelength infrared continuous zoom optical system[J]. Infrared, 2017, 38(5): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201705004.htm
[4] 杜玉楠, 牟达, 刘莹莹, 等. 20×长波红外变焦光学系统设计[J]. 红外技术, 2013, 35(10): 607-611. DOI: 10.11846/j.issn.1001_8891.201310002 DU Yunan, MOU Da, LIU Yingying, et al. Design of 20× long wavelength infrared zoom optical system[J]. Infrared Technology, 2013, 35(10): 607-611. DOI: 10.11846/j.issn.1001_8891.201310002
[5] 包佳祺, 吉紫娟, 葛振杰, 等. 高分辨率长波红外连续变焦光学系统设计[J]. 光电工程, 2014, 41(2): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201402013.htm BAO Jiaqi, JI Zijuan, GE Zhenjie, et al. Design of a long wave infrared continuous zoom optical system with high resolution[J]. Opto-Electronic Engineering, 2014, 41(2): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201402013.htm
[6] 吴凡, 李森森. 高分辨率红外变焦光学系统设计[J]. 光电技术应用, 2017, 32(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYG201705002.htm WU Fan, LI Sensen. Design of infrared continuous zoom optical system with high resolution[J]. Electro-Optic Technology Application, 2017, 32(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYG201705002.htm
[7] 孙浩, 高益, 邓岩. 三组联动长波连续变焦红外光学系统[J]. 激光与红外, 2022, 52(8): 1199-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202208015.htm SUN Hao, GAO Yi, DENG Yan, et al. Longwave infrared optical system based on three groups of linkage continuous zoom[J]. Laser & Infrared, 2022, 52(8): 1199-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202208015.htm
[8] 张以谟. 应用光学[M]. 北京: 电子工业出版社, 2008: 640. ZHANG Yimo. Applied Optical[M]. Beijing: Publishing House of Electronics Industry, 2008: 640.
[9] 贾星蕊, 李训牛, 王海洋, 等. 大变倍比长波红外连续变焦光学系统设计[J]. 红外技术, 2012, 34(8): 463-466. http://hwjs.nvir.cn/cn/article/id/hwjs201208009 JIA Xingrui, LI Xunniu, WANG Haiyang, et al. Design of a LWIR continuous zooming optic system with large zooming range[J]. Infrared Technology, 2012, 34(8): 463-466. http://hwjs.nvir.cn/cn/article/id/hwjs201208009
[10] 宋菲君, 陈笑, 刘畅. 近代光学系统设计概论[M]. 北京: 科学出版社, 2019: 11. SONG Feijun, CHEN Xiao, LIU Chang. Introduction to Modern Optical System Design[M]. Beijing: Science Press, 2019: 11.
[11] 安连生. 应用光学[M]. 北京: 北京理工大学出版社, 2002: 166. AN Liansheng. Applied Optical[M]. Beijing: Beijing Institute of Technology Press, 2002: 166.
[12] 张发平, 张华卫. 基于二元衍射面的长波无热化光学系统设计[J]. 红外技术, 2020, 42(1): 25-29. http://hwjs.nvir.cn/cn/article/id/hwjs202001004 ZHANG Faping, ZHANG Huawei. Design of long-wave athermal optical system based on binary diffractions surface[J]. Infrared Technology, 2020, 42(1): 25-29. http://hwjs.nvir.cn/cn/article/id/hwjs202001004
[13] LIANG Kunyao, WANG Bowen, ZUO Chao. Super resolution imaging based on circular coded aperture[C]//Proc. SPIE, Computational Imaging Ⅶ, 2023: 125230G, Doi: 10.1117/12.2664916.
-
期刊类型引用(1)
1. 肖沁,李正周,刘海毅. 基于场景自适应方向引导滤波的红外成像非均匀性校正方法. 光子学报. 2024(11): 253-265 . 百度学术
其他类型引用(0)