变光阑长波红外连续变焦光学系统设计

唐晗, 周春芬, 冯建伟, 张巍, 普龙, 曹凌, 马文怡谷, 王宏波, 毕宇波, 蒋旭科, 张麟, 李虹明

唐晗, 周春芬, 冯建伟, 张巍, 普龙, 曹凌, 马文怡谷, 王宏波, 毕宇波, 蒋旭科, 张麟, 李虹明. 变光阑长波红外连续变焦光学系统设计[J]. 红外技术, 2024, 46(5): 491-500.
引用本文: 唐晗, 周春芬, 冯建伟, 张巍, 普龙, 曹凌, 马文怡谷, 王宏波, 毕宇波, 蒋旭科, 张麟, 李虹明. 变光阑长波红外连续变焦光学系统设计[J]. 红外技术, 2024, 46(5): 491-500.
TANG Han, ZHOU Chunfen, FENG Jianwei, ZHANG Wei, PU Long, CAO Ling, MAWEN Yigu, WANG Hongbo, BI Yubo, JIANG Xuke, ZHANG Lin, LI Hongming. Design of LWIR Continuous Zoom Optical System with Variable Diaphragm[J]. Infrared Technology , 2024, 46(5): 491-500.
Citation: TANG Han, ZHOU Chunfen, FENG Jianwei, ZHANG Wei, PU Long, CAO Ling, MAWEN Yigu, WANG Hongbo, BI Yubo, JIANG Xuke, ZHANG Lin, LI Hongming. Design of LWIR Continuous Zoom Optical System with Variable Diaphragm[J]. Infrared Technology , 2024, 46(5): 491-500.

变光阑长波红外连续变焦光学系统设计

详细信息
    作者简介:

    唐晗(1984-),男,硕士,高级工程师,主要研究方向为红外成像系统光机设计。E-mail: 15887167873@163.com

  • 中图分类号: TN216

Design of LWIR Continuous Zoom Optical System with Variable Diaphragm

  • 摘要:

    非制冷长波连续变焦光学系统由于相对孔径大导致小型化和无热化设计困难,本文采用可变光阑约束物镜尺寸压缩系统总长,实现长波640×512非制冷连续变焦光学系统轻小型化设计。通过材料合理配置及主动补偿实现5片透镜的8.5×连续变焦光学系统消热设计。该系统F#恒定1.2、工作波段为8~12 μm、视场变焦范围为30°×24°~3.5°×2.8°、系统总长187.5 mm,该连续变焦光学系统重量轻、总长短、透过率高、在-40℃~+60℃温度范围全视场成像质量良好。

    Abstract:

    Miniaturization and athermalization design of uncooled long-wave infrared (LWIR) continuous zoom optical systems is difficult given the large relative aperture. The lightweight and miniaturization design of an LWIR continuous zoom optical system with an uncooled focal plane array detector for 640×512 pixels was realized by restraining the object lens size and total length of the system by using a variable diaphragm. Through reasonable material configuration and an active compensation method, the athermalization design of a continuous zoom optical system with a zoom ratio of 8.5 and five lenses was achieved. The system F number is constant at 1.2, the spectral range is 8 μm to 12 μm, the field of view (FOV) ranges from 30°×24° to 3.5°×2.8°, and the total length of the system is 187.5 mm. This optical system exhibits light weight, short total length, and high transmittance. Within the temperature range of -40℃ to +60℃, the optical system affords good image quality in the full field of view during zooming.

  • 图  1   正组补偿连续变焦光学系统原理图

    Figure  1.   Principle diagrams of continuous zoom optical system with mechanical compensation

    图  2   变焦参数计算程序界面

    Figure  2.   GUI of calculation program

    图  3   初始结构示意图

    Figure  3.   Schematic of the optical system

    图  4   连续变焦光学系统图

    Figure  4.   Configuration of continuous zoom optical system

    图  5   光学系统布局图

    Figure  5.   Configuration of optical system

    图  6   连续变焦光学系统传函曲线

    Figure  6.   MTF curves of continuous zoom optical system

    图  7   连续变焦光学系统点列图

    Figure  7.   Spot diagrams of continuous zoom optical system

    图  8   连续变焦光学系统畸变图

    Figure  8.   Optical distortion diagrams of continuous zoom optical system

    图  9   二元面位相、周期与元件直径的关系

    Figure  9.   Relationship of phase and periods with diameter of the binary optical element

    图  10   二元衍射面衍射效率

    Figure  10.   Diffraction efficiency of binary optical element

    图  11   连续变焦光学系统高低温下传函图

    Figure  11.   MTF curves of continuous zoom optical system at high and low temperatures

    图  12   连续变焦光学系统高低温下点列图

    Figure  12.   Spot diagrams of continuous zoom optical system at high and low temperatures

    图  13   光阑直径随系统焦距变化情况

    Figure  13.   Variational curve of diaphragm diameter

    图  14   连续变焦凸轮曲线

    Figure  14.   Cam curves of continuous zoom optical system

    表  1   探测器参数

    Table  1   Parameters of detector

    Detector VOx
    Array scale 640×512
    Pixel size/μm 12
    NETD/mK ≤40
    Spectral response/μm 45518
    Thermal response/ms 10
    Working temperature/℃ -40 to 80
    下载: 导出CSV

    表  2   光学系统设计指标

    Table  2   Parameters of optical system design

    Working waveband/μm 8 to 12
    Zoom ratio 8.5:1
    Field of view/° 30×24 to 3.5×2.8
    F# 1.2
    Focal length/mm 14.3 to 125
    Transmittance/% > 72
    Working temperature/℃ -40 to 60
    下载: 导出CSV

    表  3   光学系统间隔初始参数

    Table  3   Parameters of the optical system  mm

    Focal length 125 95.67 50.84 24.3 13
    f1′/f2′ spacing 78.5 73.97 60.4 37.74 10.6
    f2′/f3′ spacing 12.08 20.95 42.8 72.52 104
    f3′/f4′ spacing 37.58 33.24 24.9 17.9 13.6
    下载: 导出CSV
  • [1] 吴海清, 王朋. 小型化大面阵非制冷红外连续变焦光学系统设计[J]. 红外, 2020, 41(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202002001.htm

    WU Haiqing, WANG Peng. Design of miniaturized large-format uncooled infrared continuous zoom optical system[J]. Infrared, 2020, 41(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202002001.htm

    [2] 唐玉凤, 毛珊, 宋逸辰, 等. 非制冷长波红外连续变焦光学系统的一种无热化设计[J]. 光学学报, 2024, 44(7): 0722002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202407015.htm

    TANG Yufeng, MAO Shan, SONG Yichen, et al. Athermalization design of uncooled long waveband infrared continuous zoom optical system[J]. Acta Optica Sinica, 2024, 44(7): 0722002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202407015.htm

    [3] 陶郅, 王敏, 肖维军. 20倍非制冷长波红外连续变焦光学系统设计[J]. 红外, 2017, 38(5): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201705004.htm

    TAO Zhi, WANG Min, XIAO Weijun. Design of a 20×uncooled thermal long wavelength infrared continuous zoom optical system[J]. Infrared, 2017, 38(5): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201705004.htm

    [4] 杜玉楠, 牟达, 刘莹莹, 等. 20×长波红外变焦光学系统设计[J]. 红外技术, 2013, 35(10): 607-611. DOI: 10.11846/j.issn.1001_8891.201310002

    DU Yunan, MOU Da, LIU Yingying, et al. Design of 20× long wavelength infrared zoom optical system[J]. Infrared Technology, 2013, 35(10): 607-611. DOI: 10.11846/j.issn.1001_8891.201310002

    [5] 包佳祺, 吉紫娟, 葛振杰, 等. 高分辨率长波红外连续变焦光学系统设计[J]. 光电工程, 2014, 41(2): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201402013.htm

    BAO Jiaqi, JI Zijuan, GE Zhenjie, et al. Design of a long wave infrared continuous zoom optical system with high resolution[J]. Opto-Electronic Engineering, 2014, 41(2): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201402013.htm

    [6] 吴凡, 李森森. 高分辨率红外变焦光学系统设计[J]. 光电技术应用, 2017, 32(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYG201705002.htm

    WU Fan, LI Sensen. Design of infrared continuous zoom optical system with high resolution[J]. Electro-Optic Technology Application, 2017, 32(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYG201705002.htm

    [7] 孙浩, 高益, 邓岩. 三组联动长波连续变焦红外光学系统[J]. 激光与红外, 2022, 52(8): 1199-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202208015.htm

    SUN Hao, GAO Yi, DENG Yan, et al. Longwave infrared optical system based on three groups of linkage continuous zoom[J]. Laser & Infrared, 2022, 52(8): 1199-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202208015.htm

    [8] 张以谟. 应用光学[M]. 北京: 电子工业出版社, 2008: 640.

    ZHANG Yimo. Applied Optical[M]. Beijing: Publishing House of Electronics Industry, 2008: 640.

    [9] 贾星蕊, 李训牛, 王海洋, 等. 大变倍比长波红外连续变焦光学系统设计[J]. 红外技术, 2012, 34(8): 463-466. http://hwjs.nvir.cn/cn/article/id/hwjs201208009

    JIA Xingrui, LI Xunniu, WANG Haiyang, et al. Design of a LWIR continuous zooming optic system with large zooming range[J]. Infrared Technology, 2012, 34(8): 463-466. http://hwjs.nvir.cn/cn/article/id/hwjs201208009

    [10] 宋菲君, 陈笑, 刘畅. 近代光学系统设计概论[M]. 北京: 科学出版社, 2019: 11.

    SONG Feijun, CHEN Xiao, LIU Chang. Introduction to Modern Optical System Design[M]. Beijing: Science Press, 2019: 11.

    [11] 安连生. 应用光学[M]. 北京: 北京理工大学出版社, 2002: 166.

    AN Liansheng. Applied Optical[M]. Beijing: Beijing Institute of Technology Press, 2002: 166.

    [12] 张发平, 张华卫. 基于二元衍射面的长波无热化光学系统设计[J]. 红外技术, 2020, 42(1): 25-29. http://hwjs.nvir.cn/cn/article/id/hwjs202001004

    ZHANG Faping, ZHANG Huawei. Design of long-wave athermal optical system based on binary diffractions surface[J]. Infrared Technology, 2020, 42(1): 25-29. http://hwjs.nvir.cn/cn/article/id/hwjs202001004

    [13]

    LIANG Kunyao, WANG Bowen, ZUO Chao. Super resolution imaging based on circular coded aperture[C]//Proc. SPIE, Computational Imaging Ⅶ, 2023: 125230G, Doi: 10.1117/12.2664916.

  • 期刊类型引用(1)

    1. 肖沁,李正周,刘海毅. 基于场景自适应方向引导滤波的红外成像非均匀性校正方法. 光子学报. 2024(11): 253-265 . 百度学术

    其他类型引用(0)

图(14)  /  表(3)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  34
  • PDF下载量:  66
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-03-08
  • 修回日期:  2022-04-10
  • 网络出版日期:  2024-05-23
  • 刊出日期:  2024-05-19

目录

    /

    返回文章
    返回