Vacuum Life of Uncooled Infrared Detector
-
摘要:
非制冷红外探测器近年来在军用和民用领域快速发展,探测器的真空封装影响着组件的寿命,真空失效也是探测器最常见的失效模式。本文在非制冷红外探测器陶瓷封装的基础上,分析封装结构和工艺,以阿伦尼乌斯方程为加速寿命模型,研究吸气剂面积和胶水热失重对探测器内部真空度的影响。实验结果表明,增大吸气剂面积增加吸气量、选择低热失重参数胶水减少挥发性气体释放均有助于探测器内部真空度的维持,延长探测器的真空寿命。本文为非制冷红外探测器真空封装的研究提供了参考意义。
Abstract:Uncooled infrared detectors have been developed rapidly in the military and civil fields. The vacuum packaging of detectors affects the life of components, with vacuum failure being the most common failure mode. In this study, based on the ceramic packaging of an uncooled infrared detector, the packaging structure and technology were analyzed, and the effects of the getter area and glue thermal weight loss on the degree of vacuum in the detector were studied using the Arrhenius equation as an accelerated life model. The experimental results show that increasing the getter area and volume, as well as using glue with low TG parameters to reduce the release of volatile gases, helps maintain the vacuum degree inside the detector and prolongs its vacuum life. This study provides a reference for the vacuum packaging of uncooled infrared detectors.
-
Keywords:
- uncooled infrared detector /
- vacuum package /
- getter /
- epoxy glue
-
-
表 1 探测器漏率检测结果
Table 1 Detector leakage rate test results
Detector number 1 2 3 4 5 6 Leak rate/(Pa ⋅m3⋅s-1) 3.8×10-10 7.1×10-10 2.1×10-10 2.6×10-10 3.8×10-10 6.4×10-10 Detector number 7 8 9 10 11 12 Leak rate/(Pa ⋅m3⋅s-1) 3.5×10-10 6.1×10-10 3.9×10-10 7.1×10-10 4.6×10-10 5.3×10-10 Detector number 13 14 15 16 17 18 Leak rate/(Pa ⋅m3⋅s-1) 6.6×10-10 4.5×10-10 6.8×10-10 7.2×10-10 2.8×10-10 3.5×10-10 表 2 不同吸气剂面积寿命实验数据
Table 2 Life experiment data of different getter area
Detector number Getter area /cm2 First test SiTF
/(cnts/K)Seven years SiTF
/(cnts/K)SiTF
ratesTen years SiTF
/(cnts/K)SiTF rates Fourteen years SiTF
/(cnts/K)SiTF rates 1 85.6 172.051 163.167 −5.16% 129.854 −24.53% 114.550 −33.42% 4 175.231 169.653 −3.18% 130.264 −25.66% 116.151 −33.72% 7 176.569 170.622 −3.37% 130.598 −26.04% 115.43 −34.63% 2 95.2 176.133 173.063 −1.74% 168.880 −4.12% 142.120 −19.31% 5 177.549 174.353 1.80% 167.664 −5.57% 140.536 −20.85% 8 173.156 170.256 1.67% 162.731 −6.02% 139.561 −19.40% 3 180.8 177.998 178.884 0.50% 178.339 0.19% 171.989 −3.38% 6 175.443 176.853 0.80% 175.587 0.08% 170.464 −2.84% 9 172.831 174.669 1.06% 173.211 0.22% 168.100 −2.74% 表 3 不同热失重参数胶水寿命试验数据
Table 3 Life test data with different thermogravimetric parameters
Detector number Thermogravimetric parameters /(%) First test SiTF
/(cnts/K)Seven years SiTF
/(cnts/K)SiTF
ratesTen years SiTF
/(cnts/K)SiTF rates Fourteen years SiTF
/(cnts/K)SiTF rates 10 0.7 176.537 147.948 −16.19% 130.854 −25.88% 117.550 −33.41% 13 175.325 149.665 −14.64% 132.123 −24.64% 115.021 −34.40% 16 177.981 150.012 −15.71% 133.587 −24.94% 117.498 −33.98% 11 0.4 176.061 172.877 −1.81% 169.667 −3.63% 140.120 −20.41% 14 175.997 172.647 −1.90% 168.338 −4.35% 141.527 −19.59% 17 179.324 175.297 −2.25% 172.578 −3.76% 144.470 −19.44% 12 0.25 178.097 176.884 −0.68% 177.081 −0.57% 172.794 −2.98% 15 176.021 175.462 −0.32% 175.237 −0.45% 172.631 −1.93% 18 175.987 175.031 −0.54% 176.234 0.14% 171.015 −2.83% -
[1] Rogalski A, Martyniuk P, Kopytko M. Challenges of small-pixel infrared detectors: a review[J]. Reports on Progress in Pysics, 2016, 79(4): 046501. DOI: 10.1088/0034-4885/79/4/046501
[2] Fisette B, Tremblay M, Oulachgar H, et al. Novel vacuum packaged 384×288 broadband bolometer FPA with enhanced absorption in 3-14 μm wavelength[C]//Proc. of SPIE, 2017: 101771R.
[3] 李静, 宋广, 董珊, 等. 非制冷红外焦平面探测器研究进展与趋势[J]. 红外, 2020, 41(10): 1-14, 24. DOI: 10.3969/j.issn.1672-8785.2020.10.001 LI Jing, SONG Guang, DONG Shan, et al. Research progress and trend of uncooled infrared focal plane detector [J]. Infrared, 2020, 41(10): 1-14, 24. DOI: 10.3969/j.issn.1672-8785.2020.10.001
[4] 刘若冰, 陈勤. 红外焦平面探测器贮存寿命试验研究[J]. 红外技术, 2019, 41(12): 1124-1132. LIU Ruobing, CHEN Qin. Experimental study on storage life of infrared focal plane detector [J]. Infrared Technology, 2019, 41(12): 1124-1132.
[5] 石新民, 莫德锋, 范崔, 等. 红外探测器杜瓦真空寿命研究进展[J]. 真空与低温, 2021, 27(6): 572-580. SHI Xinmin, MO Defeng, FAN Cui, et al. Research progress of Dewar vacuum lifetime of infrared detectors [J]. Vacuum and Cryogenics, 2019, 27(6): 572-580.
[6] 刘继伟, 王金华, 孙俊伟, 等. 非制冷红外探测器陶瓷封装结构优化及可靠性分析[J]. 红外技术, 2023, 45(1): 77-83. http://hwjs.nvir.cn/article/id/ff1ba8d6-173a-4160-877a-06c899253810 LIU Jiwei, WANG Jinhua, SUN Junwei, et al. Structure optimization and reliability analysis of ceramic package for uncooled infrared detector [J]. Infrared Technology, 2023, 45(1): 77-83. http://hwjs.nvir.cn/article/id/ff1ba8d6-173a-4160-877a-06c899253810
[7] 朱鸣, 崔栋梁, 黄强华. 吸气剂在高真空绝热类低温容器中的应用及其吸附性能研究综述[J]. 中国特种设备安全, 2021, 37(12): 1-7. ZHU Ming, CUI Dongliang, HUANG Qianghua. Review on the application and adsorption properties of getter in high vacuum insulated cryogenic vessels [J]. China Special Equipment Safety, 2021, 37(12): 1-7.
[8] Lugt Piet M. On the use of the Arrhenius equation to describe the impact of temperature on grease life[J]. Tribology International, 2023, 179: 108142 DOI: 10.1016/j.triboint.2022.108142
[9] 屠幼萍, 王倩, 何洁, 等. ZnO压敏电阻交流老化TSC特性[J]. 中国科学(技术科学), 2013, 43(3): 241-246. TU Y P, WANG Q, HE J, et al. TSC characteristics of ZnO varistors during AC aging [J]. Science (Technical Sciences) in China, 2013, 43(3): 241-246.
[10] LAN Z, YAN F, JUN Y C, et al. Study on calibration technology for helium mass-spectrometer leak detector[J]. Applied Mechanics and Materials, 2012, 241-244: 360-363. DOI: 10.4028/www.scientific.net/AMM.241-244.360
[11] 程裕焜, 贾新章, 张德胜, 等. 微电子器件试验方法和程序: GJB548B-2005[S]. [2005-10-02]. CHENG Yukun, JIA Xinzhang, ZHAGN Desheng, et al. Test methods and procedures for Microelectronic Devices: GJB548B-2005[S]. [2005-10-02].
[12] 何小蝶. 热失重分析仪介绍和影响测试的几种因素[J]. 硅谷, 2014, 7(22): 96-97. HE Xiaodie. Introduction of thermogravimetric analyzer and Several factors affecting test [J]. Silicon Valley, 2014, 7(22): 96-97.
-
期刊类型引用(12)
1. 王小栋,吕通发,鲍明正,何永春,辛鹏,吴涛. 基于改进YOLO v5方法的电力设备红外图像识别方法. 红外技术. 2024(06): 722-727 . 本站查看
2. 孔凡梅,刘璞,赖昌生. 傅里叶描述子在AIDS患者智能化舌诊中的应用. 医学信息. 2023(04): 38-43 . 百度学术
3. 赵利鸿,高强,李大华,于晓. 基于复杂红外图像的多个绝缘子提取方法. 激光杂志. 2021(05): 62-67 . 百度学术
4. 刘正庭,尹骏刚,李凯迪,汪宵飞,王欣,万勋,姚建刚. 基于分水岭算法的绝缘子串红外图像分割方法. 电瓷避雷器. 2020(02): 216-221+228 . 百度学术
5. 许晓路,周文,周东国,朱诗沁,倪辉,罗传仙. 基于PCNN分层聚类迭代的故障区域自动提取方法. 红外技术. 2020(08): 809-814 . 本站查看
6. 赵利鸿,高强,于晓,李大华. 基于红外图像的绝缘子提取方法. 红外技术. 2020(09): 840-845 . 本站查看
7. 魏豪,张凯,郑磊,曹源,张丁文. 基于HOG-RCNN的电力巡检红外图像目标检测. 红外与激光工程. 2020(S2): 242-247 . 百度学术
8. 周正钦,冯振新,周东国,许晓路,谷凯凯. 基于扩展Meanshift电气设备发热故障区域提取方法. 红外技术. 2019(01): 78-83 . 本站查看
9. 冯振新,许晓路,周东国,江翼,丁国成. 基于Canny算子的简化PCNN电力故障区域提取方法. 红外技术. 2019(07): 634-639 . 本站查看
10. 李晓峰,庞先海,顾朝敏,董驰. 基于红外图像的变电站巡检故障分析. 信息技术. 2019(08): 121-124+129 . 百度学术
11. 李伟,王军,俞跃. 基于可见光匹配矩阵的电气部件故障红外自动识别算法. 红外技术. 2019(11): 1047-1056 . 本站查看
12. 周可慧,廖志伟,肖异瑶,肖立军,蓝鹏昊,万新宇. 基于改进CNN的电力设备红外图像分类模型构建研究. 红外技术. 2019(11): 1033-1038 . 本站查看
其他类型引用(8)