轴对准测试系统光机热集成分析

陈媛, 王劲松, 王浩, 张云川

陈媛, 王劲松, 王浩, 张云川. 轴对准测试系统光机热集成分析[J]. 红外技术, 2024, 46(11): 1235-1244.
引用本文: 陈媛, 王劲松, 王浩, 张云川. 轴对准测试系统光机热集成分析[J]. 红外技术, 2024, 46(11): 1235-1244.
CHEN Yuan, WANG Jinsong, WANG Hao, ZHANG Yunchuan. Thermal Integration Analysis of Optical Machines for Axis Alignment Test Systems[J]. Infrared Technology , 2024, 46(11): 1235-1244.
Citation: CHEN Yuan, WANG Jinsong, WANG Hao, ZHANG Yunchuan. Thermal Integration Analysis of Optical Machines for Axis Alignment Test Systems[J]. Infrared Technology , 2024, 46(11): 1235-1244.

轴对准测试系统光机热集成分析

基金项目: 

吉林省重点科技研发项目 20180201025GX

详细信息
    作者简介:

    陈媛(1998-),女,硕士研究生,主要从事光机结构设计及仿真分析研究。E-mail: 1621124327@qq.com

    通讯作者:

    王劲松(1973-),男,教授,博士生导师,主要从事光电装备性能测试、现代光电传感技术、视光技术及仪器研究。E-mail: soldier_1973@163.com

  • 中图分类号: TH74

Thermal Integration Analysis of Optical Machines for Axis Alignment Test Systems

  • 摘要:

    轴对准测试系统是一种应用大口径平行光管法来测量光轴平行性的重要仪器,系统焦距为4800 mm,口径为600 mm。在测试过程中,由于焦距长、口径大,环境温度的变化引起的各元件的微小变形都会影响系统的成像质量及测试精度。因此,需要对该系统进行光机热集成分析。建立了轴对准测试系统的有限元分析模型,分析了稳态温度场、温度梯度场下系统的热变形,利用Zernike多项式对热变形后的镜面进行面型拟合,将拟合系数导入光学设计软件,得到不同温度变化下对轴对准测试系统的影响,通过实验验证了仿真结果的准确性。结果表明:稳态温度场下,在设计参数要求的温度范围内,光学系统波像差均小于λ/10(λ=632.8 nm),光轴平行性检测精度满足0.02 mrad;温度梯度场对系统影响更大,需将系统内外温差控制在±3℃内。

    Abstract:

    The axis alignment test system is an important instrument for measuring the parallelism of optical axes by applying the method of large aperture parallel light tubes, with a focal length of 4800 mm and an aperture of 600 mm. During the test process, due to the long focal length and large aperture, the small deformation of each component caused by the change of the ambient temperature will affect the imaging quality of the system and the test accuracy. Therefore, an opto-mechanical thermal integration analysis of the system is required. The finite element analysis model of the shaft alignment test system was established, the thermal deformation of the system under steady state temperature field and temperature gradient field was analyzed, the Zernike polynomials were used to fit the surface shape of the mirror after thermal deformation, and the fitting coefficients were imported into the optical design software to get the effects on the shaft alignment test system under different temperature changes, and the accuracy of the simulation results was verified by experiments. The results show that: under the steady state temperature field, within the temperature range required by the design parameters, the wave aberration of the optical system is less than λ/10 (λ=632.8 nm), and the accuracy of the optical axis consistency detection meets 0.02mrad; the temperature gradient field has a greater impact on the system, and it is necessary to control the temperature difference between the inside and the outside of the system to within ±3℃.

  • 图  1   轴对准测试系统光学系统示意图

    Figure  1.   Schematic diagram of the optical system of the axis alignment test system

    图  2   光学设计结果

    Figure  2.   Optical design results

    图  3   轴对准测试系统的光机结构

    Figure  3.   Optical machine structure of the axis alignment test system

    图  4   主次镜支撑结构

    Figure  4.   Primary and secondary mirror support

    图  5   轴对准测试系统的网格模型

    Figure  5.   Mesh model of the axis alignment test system

    图  6   径向运动下矢高位移的计算方法

    Figure  6.   Calculation method of vector height displacement in radial motion

    图  7   30℃时轴对准测试系统的变形云图

    Figure  7.   Deformation clouds of the axis-aligned test system at 30℃

    图  8   不同温度下主次镜RMS值及PV值变化曲线

    Figure  8.   Variation curves of RMS and PV values of primary and secondary mirrors at different temperatures

    图  9   不同温度下各像面点列图

    Figure  9.   Spot diagram of each image plane at different temperatures

    图  10   不同温度下各像面波像差

    Figure  10.   Wave aberration of each image plane at different temperatures

    图  11   不同温度下各像面光斑中心点偏移

    Figure  11.   Spot center shift of each image plane at different temperatures

    图  12   温度梯度下主次镜RMS值及PV值变化曲线

    Figure  12.   RMS and PV curves of primary and secondary mirrors under temperature gradients

    图  13   3℃温度梯度下系统成像质量分析

    Figure  13.   Analysis of the imaging quality of the system under a 3℃ temperature gradient

    图  14   不同温度下石英玻璃主次镜的面型精度

    Figure  14.   Face shape accuracy of primary and secondary mirrors of quartz glass at different temperatures

    图  15   轴对准测试系统热稳定性实验

    Figure  15.   Thermal stability test of shaft alignment test system

    图  16   系统波像差检测结果

    Figure  16.   System wave aberration detection results

    表  1   设计参数

    Table  1   Design parameters

    Technical specifications Numerical values
    Operating band/μm 0.4~14
    Focal length/mm 4800
    Aperture/mm 600
    Secondary mirror shading ratio 0.34
    Surface accuracy of primary and secondary mirrors RMS (root mean square)≤λ/20、PV (peak to valley)≤λ/3(λ=632.8 nm)
    Wave aberration RMS≤λ/10(λ=632.8 nm)
    Detector pixel size/μm Visible/NIR:4.8
    Short-wave infrared:5
    Long-wave infrared:12
    Operating temperature/℃ 25±5
    Optical axis consistency/ mrad 0.02
    下载: 导出CSV

    表  2   各组件材料属性

    Table  2   Material properties of each component

    Materials Density/(g/cm2) Linear expansion coefficient /℃-1 Elastic modulus /GPa Poisson ratio
    Microcrystalline glass 2.53 5×10-8 90.3 0.24
    F_SILICA 2.2 5×10-7 72.7 0.17
    Al6061 2.81 2.34×10-5 70 0.33
    45# Steel 7.85 1.16×10-5 210 0.31
    Rubber 2.1 1.03×10-4 0.28 0.4
    下载: 导出CSV

    表  3   光轴平行性精度测试

    Table  3   Optical axis parallelism accuracy test

    Modes Uniform temperature variation Temperature gradient
    Temperature/℃ 20 30 3
    Repeatability accuracy/mrad 0.00363 0.00511 0.00905
    Measurement accuracy/% 1.62 1.60 2.76
    下载: 导出CSV

    表  4   光轴平行性检测误差

    Table  4   Optical axis parallelism detection accuracy

    Modes Uniform temperature variation Temperature gradient
    Temperature/℃ 20 30 3
    Detection accuracy/mrad 0.0073 0.0082 0.011
    下载: 导出CSV
  • [1] 徐新行, 陈宁, 王兵, 等. 机载紧凑型中波红外相机的设计[J]. 中国激光, 2014, 41(8): 0816002.

    XU X, CHEN N, WANG B, et al. Design of compact middle-wave infrared camera used on airborne platform[J]. Chinese Journal of Lasers, 2014, 41(8): 0816002.

    [2]

    Miller J, Hatch M, Green K. Predicting performance of optical systems undergoing thermal/mechanical loadings using integrated thermal/structural/optical numerical methods[J]. Optical Engineering, 1981, 20(2): 166-174.

    [3] 肖阳, 徐文东, 赵成强. 光机系统的一体化仿真分析[J]. 光学学报, 2016, 36(7): 0722002.

    XIAO Y, XU W, ZHAO C. Integrated simulation of opto-mechanical system[J]. Acta Optica Sinica, 2016, 36(7): 0722002.

    [4] 潘越, 徐熙平, 乔杨. 变焦红外双波段投影镜头的光机热分析[J]. 光学学报, 2018, 38(5): 0522001.

    PAN Y, XU X, QIAO Y. Optical-structural-thermal analysis of zoom infrared dual-band projection lens[J]. Acta Optica Sinica, 2018, 38(5): 0522001.

    [5]

    YUAN Z, MENG X, LI C, et al. Research on thermal design and thermal optical performance of space telescope based on multidisciplinary integration[J]. Journal of Thermal Stresses, 2022, 45(5): 401-414. DOI: 10.1080/01495739.2022.2049023

    [6] 赵源, 张殿富, 王洪伟. 某空间望远镜光机热集成分析[J]. 激光与红外, 2012, 42(4): 404-407. DOI: 10.3969/j.issn.1001-5078.2012.04.011

    ZHAO Y, ZHANG D, WANG H. Integrated thermal-structural-optical analysis of a space telescope[J]. Laser & Infrared, 2012, 42(4): 404-407. DOI: 10.3969/j.issn.1001-5078.2012.04.011

    [7] 张纪承, 罗海燕, 胡广骁, 等. 空间外差拉曼光谱仪成像镜头光机热集成分析[J]. 应用光学, 2018, 39(3): 332-338.

    ZHANG Jicheng, LUO Haiyan, HU Guangxiao, et al. Thermal/structural/optical integrated analysis on spatial heterodyne Raman spectrometer imaging lens[J]. Journal of Applied Optics, 2018, 39(3): 332-338.

    [8] 刘朋朋, 靳利锋, 赵慧, 等. 低轨道遥感相机光机热一体化分析及优化设计[J]. 红外技术, 2022, 44(6): 614-621. http://hwjs.nvir.cn/article/id/9b4c2bc0-ab24-492c-adc9-bf6120f2a6ad

    LIU Pengpeng, JIN Lifeng, ZHAO Hui, et al. Integrated opto-mechanical-thermal analysis and optimization design of a low-orbit remote sensing camera[J]. Infrared Technology, 2022, 44(6): 614-621. http://hwjs.nvir.cn/article/id/9b4c2bc0-ab24-492c-adc9-bf6120f2a6ad

    [9] 李盛林, 韩光宇, 卢惠琴, 等. 1.25m口径宽波段测试设备设计[J]. 机械设计与制造, 2020(5): 111-115. DOI: 10.3969/j.issn.1001-3997.2020.05.026

    LI Shenglin, HAN Guangyu, LU Huiqin, et al. The opto-mechanical structure design of 1.25 meter wide band detection device[J]. Machinery Design & Manufacture, 2020(5): 111-115. DOI: 10.3969/j.issn.1001-3997.2020.05.026

    [10] 邵帅. 多波段共口径红外系统光机热一体化设计[J]. 仪器仪表学报, 2013, 34(2): 387-393. DOI: 10.3969/j.issn.0254-3087.2013.02.022

    SHAO Shuai. Integrated design of optical-mechanism and heat for shared aperture infrared system with multi-spectrum band[J]. Chinese Journal of Scientific Instrument, 2013, 32(2): 387-393. DOI: 10.3969/j.issn.0254-3087.2013.02.022

    [11] 温中凯, 张庆君, 李爽, 等. 空间光电跟瞄系统多光轴平行性标校研究[J]. 中国光学, 2021, 14(3): 625-633.

    WEN Zhongkai, ZHANG Qingjun, LI Shuang, et al. Multi-optical axis parallelism calibration of space photoelectric tracking and aiming system[J]. Chinese Optics, 2021, 14(3): 625-633.

    [12] 金伟其, 王霞, 张其扬, 等. 多光轴一致性检测技术进展及其分析[J]. 红外与激光工程, 2010, 39(3): 526-531. DOI: 10.3969/j.issn.1007-2276.2010.03.031

    JIN Weiqi, WANG Xia, ZHANG Qiyang, et al. Technical progress and its analysis in detecting of multi-axes parallelism system[J]. Infrared and Laser Engineering, 2010, 39(3): 526-531. DOI: 10.3969/j.issn.1007-2276.2010.03.031

    [13] 杨雪, 陈文红, 张玺, 等. 宽光谱光电系统多光轴平行性工程化测试方法研究[J]. 激光与红外, 2019, 49(8): 978-982. DOI: 10.3969/j.issn.1001-5078.2019.08.012

    YANG Xue, CHEN Wenhong, ZHANG Xi, et al. A method for multi-axial parallelism measurement of a multi-band optoelectronic system in engineering[J]. Laser & Infrared, 2019, 49(8): 978-982. DOI: 10.3969/j.issn.1001-5078.2019.08.012

    [14]

    YAN P, LIU K, DUAN J, et al. Switch-zoom optical system design of large aperture ground-based photoelectric detection[C]//8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes. SPIE, 2016, 9682: 280-288.

    [15] 刘家国, 李林. 光机热集成分析中数据转换接口研究[J]. 北京理工大学学报, 2007, 27(5): 427-431. DOI: 10.3969/j.issn.1001-0645.2007.05.012

    LIU Jiaguo, LI Lin. Study on the data transfer interface in the thermal/structural/optical integrated analysis[J]. Transactions of Beijing Institute of Technology, 2007, 27(5): 427-431. DOI: 10.3969/j.issn.1001-0645.2007.05.012

    [16]

    Coronato P A, Juergens R C. Transferring FEA results to optics codes with Zernikes: a review of techniques[J]. Optomechanics, 2003, 5176: 1-8.

    [17] Keith B Doyle, Victor L Genberg, Gregory J Michels. Integrated Optomechanical Analysis[M]. Second Edition, Bellingham: SPIE Press, 2012.
    [18] 黄静, 刘朝晖, 折文集, 等. 室内多波段光轴一致性测试系统的设计[J]. 应用光学, 2007, 28(5): 663-666. DOI: 10.3969/j.issn.1002-2082.2007.05.030

    HUANG Jing, LIU Zhaohui, SHE Wenji, et al. Design of lab test system for boresight of multi-channel optical axes[J]. Journal of Applied Optics, 2007, 28(5): 663-666. DOI: 10.3969/j.issn.1002-2082.2007.05.030

  • 期刊类型引用(8)

    1. 薛莹,赵志鹏,刘建翔,李绍鹏. 基于红紫外光电传感器的多波段火焰探测方法研究. 消防科学与技术. 2024(03): 384-388 . 百度学术
    2. 许文进,桂坚斌,吴零越,薛雅心,龚青. 多波段红外光学火焰探测器的设计研究. 仪器仪表用户. 2023(07): 16-20 . 百度学术
    3. 李强 ,张立军 ,王冠鹰 ,宋文刚 ,吴秀龙 ,黎轩 . 高精度高可靠宽光谱火焰探测器设计. 传感器与微系统. 2021(07): 67-69+73 . 百度学术
    4. 王博强,张义勇,齐跃,姜健. 基于CZT算法的多波段红外火焰探测器设计. 船海工程. 2020(06): 1-4 . 百度学术
    5. 谭勇,谢林柏,冯宏伟,温子腾. 基于LASSO回归的红外火焰探测器的设计与实现. 激光与红外. 2019(06): 720-724 . 百度学术
    6. 刘建翔,李绍鹏,李杨,薛莹,刘欣. 紫外光电型一体化火焰检测器设计. 山东科学. 2019(04): 101-106 . 百度学术
    7. 严波,杨可军,操松元,陈璐,方登洲. 异步近红外传感器在火焰检测中的应用. 信息技术. 2019(09): 65-70+75 . 百度学术
    8. 王冠鹰,郑占旗,宋文刚,张立军. 高可靠火焰探测器软件算法设计与测试. 现代电子技术. 2019(24): 30-33 . 百度学术

    其他类型引用(9)

图(16)  /  表(4)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  6
  • PDF下载量:  19
  • 被引次数: 17
出版历程
  • 收稿日期:  2023-08-29
  • 修回日期:  2023-09-19
  • 刊出日期:  2024-11-19

目录

    /

    返回文章
    返回