Flicker Noise Testing System of Electron Bombarded Active Pixel Sensor
-
摘要:
电子轰击有源像素传感器(electron bombarded active pixel sensor,EBAPS)是新型的真空-固体混合型数字微光夜视器件。闪烁噪声是影响EBAPS分辨力和成像质量的关键因素,然而,目前EBAPS闪烁噪声的测试研究不足。为此,本文首先开展EBAPS闪烁噪声测试方法研究,使用连通域检测算法筛选高亮噪点区域,提出异常像素点自适应中值替代的离散系数测试方法,在此基础上研制了EBAPS闪烁噪声测试系统,采用离散系数和高亮噪点数量作为闪烁噪声的表征参数,驱动EBAPS将不同测试条件下采集到的图像数据传输至上位机进行噪声处理与分析,测试结果表明:合适的测试照度为1.27×10-3 lx,高亮噪点数量在-1000~-1300 V范围内数量较少,-1300~-1500 V时高亮噪点数量则明显提升。离散系数和连通域数量重复度均在3%以内,验证了测试系统的稳定性,为国产EBAPS闪烁噪声测试提供有效手段。
Abstract:An electron bombarded active pixel sensor (EBAPS) is a novel vacuum-solid, hybrid, digital, low-light night vision device. Flicker noise is a key factor affecting the resolution and image quality of EBAPS; however, there is currently insufficient research on the testing of flicker noise in EBAPS. Hence, this study conducted research on EBAPS flicker noise testing methods using connected domain detection algorithms to filter out high-brightness noise spot areas and proposed an adaptive, median replacement, discrete coefficient testing method for abnormal pixel points. Based on these results, an EBAPS flicker-noise testing system was developed using the discrete coefficient and number of bright noise spots as parameters to characterize the flicker noise. The system drives the EBAPS to transfer image data collected under different test conditions to an upper computer for noise processing and analysis. The test results indicate that the appropriate test illuminance is 1.27×10−3 lx. Moreover, the number of high-brightness noise spots is relatively low in the −1000−1300 V range, and it significantly increases when the voltage is between −1300−1500 V. The repeatability of the discrete coefficient and number of connected domains was within 3%, thus verifying the stability of the testing system and providing an effective means by which to test flicker noise in domestic EBAPS.
-
Keywords:
- EBAPS /
- flicker noise /
- electronic multiplying /
- test system /
- connected domain detection algorithm
-
-
图 9 不同轰击电压下的离散系数热力图:(a) 电压为-1000 V;(b) 电压为-1100 V;(c) 电压为-1200 V;(d) 电压为-1300 V;(e) 电压为-1400 V;(f) 电压为-1500 V
Figure 9. Discrete coefficient thermodynamic diagram under different bombardment voltages (a)Voltage −1000 V; (b)Voltage −1100 V; (c)Voltage −1200 V; (d)Voltage −1300 V; (e)Voltage −1400 V; (f)Voltage −1500 V
表 1 -1000 V~-1500 V连通域数量
Table 1 Number of connected domains from −1000 to −1500 V
Bombardment voltage/V Number of tests Average value Repeatability/% 1 2 3 4 5 −1000 7.90 7.86 7.74 7.88 7.74 7.82 0.99 −1100 7.56 8.00 8.10 7.72 7.90 7.86 2.76 −1200 7.92 7.90 8.12 7.92 8.24 8.04 1.91 −1300 11.94 12.18 12.10 12.52 12.26 12.20 1.75 −1400 23.66 23.06 23.42 23.06 22.72 23.18 1.56 −1500 42.90 42.62 41.34 42.88 40.88 42.12 2.25 -
[1] 夏皓天, 钱芸生, 王逸伦, 等. 基于FPGA的低照度条件下EBAPS图像混合噪声去除算法[J]. 应用光学, 2022, 43(6): 1075-1087. XIA Haotian, QIAN Yunsheng, WANG Yilun, et al. Hybrid noise removal algorithm for EBAPS images under low illumination conditions based on FPGA[J]. Applied Optics, 2022, 43(6): 1075-1087.
[2] 严毅赟, 钱芸生, 张景智, 等. 电子轰击有源像素传感器光谱响应测试系统设计[J]. 激光与光电子学进展, 2022, 59(13): 123-128. YAN Yiyun, QIAN Yunsheng, ZHANG Jingzhi, et al. Design of a spectral response testing system for electronic bombardment active pixel sensors[J]. Progress in Laser and Optoelectronics, 2022, 59(13): 123-128.
[3] 刘亚宁, 桑鹏, 吕嘉玮, 等. 微型低功耗EBAPS相机技术[J]. 红外技术, 2019, 41(9): 810-818. http://hwjs.nvir.cn/article/id/hwjs201909003 LIU Yaning, SANG Peng, LV Jiawei, et al. Micro low-power EBAPS camera technology[J]. Infrared technology, 2019, 41(9): 810-818. http://hwjs.nvir.cn/article/id/hwjs201909003
[4] 唐小东. EBAPS电子轰击性能测试技术研究[D]. 南京: 南京理工大学, 2019. TANG Xiaodong. Research on EBAPS Electronic Bombardment Performance Testing Technology[D]. Nanjing: Nanjing University of Technology, 2019.
[5] 宋德, 石峰, 李野. 基底均匀掺杂下EBAPS电荷收集效率的模拟研究[J]. 红外与激光工程, 2016, 45(2): 48-52. SONG De, SHI Feng, LI Ye. Simulation study on the charge collection efficiency of EBAPS under uniform substrate doping[J]. Infrared and Laser Engineering, 2016, 45(2): 48-52.
[6] 周吉强. EBAPS中电子倍增层增益特性测试系统的研究[D]. 长春: 长春理工大学, 2018. ZHOU Jiqiang. Research on the Gain Characteristics Testing System of Electron Multiplier Layer in EBAPS[D]. Changchun: Changchun University of Technology, 2018.
[7] 朴雪. 电子轰击有源像素传感器电荷收集效率理论模拟研究[D]. 长春: 长春理工大学, 2017. PU Xue. Theoretical Simulation Study on Charge Collection Efficiency of Electronic Bombardment Active Pixel Sensors[D]. Changchun: Changchun University of Science and Technology, 2017.
[8] LI Tongtong, XIAO Chao, JIAO Gangcheng, et al Research on noise characteristics of EBAPS digital low light level device[C]//Proc. of SPIE of Ninth Symposium on Novel Photoelectronic Detection Technology and Applications, 2023, 12617: 126176F.
[9] 徐鹏霄, 唐光华, 唐家业, 等. EBCMOS混合型光电探测器研究[J]. 光电子技术, 2016, 36(4): 232-236, 252. XU Pengxiao, TANG Guanghua, TANG Jiaye, et al Research on EBCMOS hybrid photodetectors[J]. Optoelectronic Technology, 2016, 36(4): 232-236, 252.
[10] TANG X., QIAN Y, KONG X, et alA high-dynamic range CMOS camera based on dual-gain channels[J]. J. Real-Time Image Proc. , 2020, 17: 703-712. DOI: 10.1007/s11554-019-00877-8
[11] WANG Xuening, SONG De, JIAO Gangcheng, et al. Characterising backscattered electrons in EBCMOS[J]. IEEE Photonics Journal, 2022, 14(6): 1-5.
[12] 张海舟, 母一宁, 王连锴, 等. EBCMOS微光成像器件的研究[J]. 真空科学与技术学报, 2017, 37(10): 991-996. ZHANG Haizhou, MU Yining, WANG Liankai, et al. Research on EBCMOS low light imaging devices[J]. Journal of Vacuum Science and Technology, 2017, 37(10): 991-996.
[13] 熊智鹏, 李琦, 王骐. 电子轰击型有源像素传感器在激光雷达的应用[J]. 激光与红外, 2012, 42(7): 6. XIONG Zhipeng, LI Qi, WANG Qi. Application of electronic bombardment active pixel sensors in Lidar[J]. Laser and Infrared, 2012, 42(7): 6.
[14] Tutt J H, Holland A D, Hall D J, et al. The noise performance of electron-multiplying charge-coupled devices at X-ray energies[J]. IEEE Transactions on Electron Devices, 2012, 59(1): 167-175. DOI: 10.1109/TED.2011.2172611
[15] Dominjon A, Ageron M, Barbier R, et al. An ebCMOS camera system for marine bioluminescence observation: the LuSEApher prototype[J]. Nuclear Inst & Methods in Physics Research A, 2012, 695: 172-178.
[16] Cajgfinger T, Dominjon A, Barbier R. Single photon detection and localization accuracy with an ebCMOS camera[J]. Nuclear Inst & Methods in Physics Research A, 2015, 787: 176-181.
[17] WEI Kaixuan, FU Ying, YANG Jiaolong, et al. A physics-based noise formation model for extreme low-light raw denoising[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 2758-2767.
[18] 杨敏杰. 基于低照度CMOS的闪烁噪声测试技术及降噪方法研究[D]. 南京: 南京理工大学. YANG Minjie. Research on Flicker Noise Testing Technology and Noise Reduction Methods Based on Low Illumination CMOS[D]. Nanjing: Nanjing University of Science and Technology.
[19] 刘欣妍, 钱芸生, 魏静雯. 打拿极光电倍增管逐级增益自动测试系统[J]. 应用光学, 2022, 43(6): 1117-1123. LIU Xinyan, QIAN Yunsheng, WEI Jingwen. The automatic test system for gradual gain of Tana aurora electric multiplier tube[J]. Applied Optics, 2022, 43(6): 1117-1123.