基于硅锗材料低成本中波红外光学系统无热化设计

贺磊, 王仁浩, 侯彬, 司红利, 杨克君, 胡海力

贺磊, 王仁浩, 侯彬, 司红利, 杨克君, 胡海力. 基于硅锗材料低成本中波红外光学系统无热化设计[J]. 红外技术, 2023, 45(5): 527-533.
引用本文: 贺磊, 王仁浩, 侯彬, 司红利, 杨克君, 胡海力. 基于硅锗材料低成本中波红外光学系统无热化设计[J]. 红外技术, 2023, 45(5): 527-533.
HE Lei, WANG Renhao, HOU Bin, SI Hongli, YANG Kejun, HU Haili. Athermalization Design of a Low-cost Medium-wave Infrared Optical System Based on Si/Ge Material[J]. Infrared Technology , 2023, 45(5): 527-533.
Citation: HE Lei, WANG Renhao, HOU Bin, SI Hongli, YANG Kejun, HU Haili. Athermalization Design of a Low-cost Medium-wave Infrared Optical System Based on Si/Ge Material[J]. Infrared Technology , 2023, 45(5): 527-533.

基于硅锗材料低成本中波红外光学系统无热化设计

详细信息
    作者简介:

    贺磊(1981-),男,吉林省吉林市人,高级工程师,主要从事光学系统设计、光学导引头设计与研制等方面的研究。E-mail:helei3024@126.com

  • 中图分类号: TH741

Athermalization Design of a Low-cost Medium-wave Infrared Optical System Based on Si/Ge Material

  • 摘要: 为实现中波制冷红外导引头的低成本、无热化设计,采用两轴框架式总体布局方式,基于硅锗光学材料,利用一次成像3片式光学结构(Si-Ge-Si),选用斯特林制冷型面阵规模640×512像素尺寸为15 μm的中波红外探测器作为接收器件,设计一种高分辨率低成本中波制冷红外成像制导光学系统,并实现了宽温范围内的无热化设计。设计结果表明,光学系统焦距为55 mm,视场大小为10°×8°,在33 lp/mm处,轴上0视场的调制传递函数(Modulation Transfer Function,MTF)不低于0.6,轴外0.7视场传递函数不低于0.40,畸变小于1%,冷光阑效率100%。同时,结合整流罩进行针对性优化设计,系统冷反射现象基本消除,在-40℃~+70℃温度范围内具有良好的成像效果。光学系统结构简单,易加工装校,良品率高。经实测样机,光学系统成像质量优良,各项性能指标满足技术指标要求。
    Abstract: To realize the low-cost and athermalization design of medium-wave infrared seekers, a high-resolution medium-wave infrared imaging guidance optical system with infrared imaging guidance was designed with low-cost and wide-temperature-range athermalization. The general layout is a two-axis frame; the system chooses one imaging configuration with three pieces of lenses based on Si/Ge material. The detector chooses a Stirling-cooled 640 pixel×512 pixel detector with the pixel size of 15 μm. The prototype design results show that the optical system focal length is 100 mm, field size is 10°×8° at 33 lp/mm, the axis view of the modulation transfer function (MTF) is not less than 0.6, 0.7 field of the off-axis modulation transfer function (MTF) is not less than 0.40, the system distortion is less than 1%, and the efficiency of the cold stop is 100%. Moreover, the narcissus of the system is almost elimination based on pertinence optimization design with fairing. In the temperature range of -40 to 70℃, good image effect was realized. The optical system has the advantages of a simple structure, ease of processing and adjustment, and high yield rate; the imaging quality of the optical system is excellent, and the performance indexes meet the technical specifications.
  • 图  1   两轴框架式导引头结构示意图

    Figure  1.   Two axis frame seeker structure

    图  2   光学系统图

    Figure  2.   Layout of optical system

    图  3   二元面面型

    Figure  3.   The binary surface

    图  4   20℃时MTF曲线

    Figure  4.   MTF curves at 20℃

    图  5   -40℃时MTF曲线

    Figure  5.   MTF curves at -40℃

    图  6   +70℃时MTF曲线

    Figure  6.   MTF curves at +70℃

    图  7   光学系统场曲和畸变

    Figure  7.   The curvature of field and distortion in optical system

    图  8   三维分析模型

    Figure  8.   Layout of analysis model

    图  9   像面非相干照度灰度图

    Figure  9.   Detector image incoherent irradiance grayscale

    图  10   像面非相干照度曲线(XY

    Figure  10.   Detector image incoherent irradiance curve (X, Y)

    图  11   公差分析曲线

    Figure  11.   Tolerance analysis curves

    图  12   精密装校后的光学系统

    Figure  12.   Optical system after precision calibration

    图  13   实测MTF曲线图

    Figure  13.   The measured MTF curves

    图  14   实测畸变曲线图

    Figure  14.   The measured distortion curves

    表  1   光学技术指标

    Table  1   Optical technical requirements

    Item Value
    Response wave band 3.7~4.8μm
    Focal length 55 mm
    FOV 10°×8°
    F# 2
    Distortion ≤1%
    Detector resolution 640×512
    Pixel size 15 μm×15 μm
    Working temperature -40℃~+70℃
    下载: 导出CSV

    表  2   光学镜头参数表

    Table  2   The optical lens date

    Serial
    umber
    Name Thickness/
    mm
    Radius/
    mm
    Optical
    material
    1 Bow cap 5 110 Sapphire
    10 105
    2 Optical lens 1 7.1 53.05 Silicon
    1.7 135.48
    3 Optical lens 2 4 172.58 Germanium
    35.8 63.99
    4 Optical lens 3 4 71.48 Silicon
    10.45 185.22
    下载: 导出CSV

    表  3   不同温度下MTF值(最小值)

    Table  3   MTF values at different temperatures (the minimum value)

    Temperature
    Field -40℃ 20℃ +70℃
    0 Field 0.58 0.62 0.60
    0.7 Field 0.45 0.46 0.46
    1.0 Field 0.5 0.45 0.46
    下载: 导出CSV

    表  4   零件加工公差

    Table  4   The parts processing tolerance

    Serial number Name Fringes Irregularity Thickness/mm Decentration/mm
    1 Bow cap ±10 ±1 ±0.1 0.04
    2 Optical lens 1 ±5 ±0.5 ±0.03 0.02
    3 Optical lens 2 ±5 ±0.5 ±0.03 0.01
    4 Optical lens 3 ±5 ±0.5 ±0.03 0.01
    下载: 导出CSV

    表  5   零件装配公差

    Table  5   The parts assembling tolerance

    Serial number Name Interval/mm Coaxiality/mm Tilt/′
    1 Bow cap ±0.1 ±0.1 5
    2 Optical lens 1 ±0.03 ±0.02 1.7
    3 Optical lens 2 ±0.03 ±0.02 1.7
    4 Optical lens 3 ±0.03 ±0.02 1.7
    下载: 导出CSV
  • [1] 杨胜杰. 高分辨率制冷型中波广角红外成像系统的光学设计[J]. 光学学报, 2012, 32(8): 0822003. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201208028.htm

    YANG Shengjie. Optical design for high resolution cooled mid-wavelength infrared wide-angle system[J]. Acta Ootical Sinica, 2011, 32(8): 0822003. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201208028.htm

    [2] 李富栋. 机载红外搜索跟踪系统的现状与发展[J]. 激光与红外, 2008, 38(5): 409-412. DOI: 10.3969/j.issn.1001-5078.2008.05.001

    LI Fudong. Status and development of airborne IRST systems[J]. Laser & Infrared, 2008, 38(5): 409-412. DOI: 10.3969/j.issn.1001-5078.2008.05.001

    [3]

    Fonti S, Solazzo S, Blanco A, et al. An infrared zoom for space applications[J]. Planetary and Space Science, 2000, 48(5): 523-528. DOI: 10.1016/S0032-0633(00)00025-8

    [4] 赵坤, 李升辉. 双孔径红外变焦光学系统设计[J]. 红外与激光工程, 2013, 42(11): 2889-2893. DOI: 10.3969/j.issn.1007-2276.2013.11.004

    ZHAO Kun, LI Shenghui. Optical design of dual aperture infrared zoom optical system[J]. Infrared and Laser Engineering, 2013, 42(11): 2889-2893. DOI: 10.3969/j.issn.1007-2276.2013.11.004

    [5] 邓键, 李锐钢, 邓显池, 等. 折反式红外镜头的无热化研究[J]. 应用光学, 2014, 35(1): 147-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201401031.htm

    DENG Jian, LI Ruigang, DENG Xianchi. Athermalizing mirror-lens infrared optical system[J]. Journal of Applied Optical, 2014, 35(1): 147-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201401031.htm

    [6] 曲贺盟, 张新. 高速切换紧凑型双视场无热化红外光学系统设计[J]. 中国光学, 2014, 7(4): 623-628. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201404013.htm

    QU Hemeng, ZHANG Xin. Design of athermalized infrared optical system with high-speed switching and compact dual-FOV[J]. Chinese Optics, 2014, 7(4): 623-628. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201404013.htm

    [7] 毛玉星, 胡旭. 红外图像实时处理系统设计[J]. 红外技术, 2003, 25(5): 50-53. DOI: 10.3969/j.issn.1001-8891.2003.05.013

    MAO Yuxing, HU Xu. The design of real-time processing system of infrared image[J]. Infrared Technology, 2003, 25(5): 50-53. DOI: 10.3969/j.issn.1001-8891.2003.05.013

    [8] 薛庆生. 星载大相对孔径宽视场成像光谱仪光学系统设计[J]. 中国激光, 2014, 41(3): 0316003. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201403045.htm

    XUE Qingsheng. Optical system design of large relative-aperture and wide field of view spaceborne imaging spectrometer[J]. Chinese Journal of Lasers, 2014, 41(3): 0316003. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201403045.htm

    [9] 许照东, 刘欣, 董涛. 机载高分辨率连续变焦红外热像仪设计[J]. 红外与激光工程, 2007, 36(5): 619-621. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200705011.htm

    XU Zhaodong, LIU Xin, DONG Tao. Design of airborne high resolution and continuous magnification IR thermal imager[J]. Infrared and Laser Engineering, 2007, 36(5): 619-621. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200705011.htm

    [10] 徐新行, 陈宁, 王兵, 等. 机载紧凑型中波红外相机的设计调[J]. 中国激光, 2014, 41(8): 0816002. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201408047.htm

    XU Xinhang, CHEN Ning, WANG Bing, et al. Design of compact middle-wave infrared camera used on airborne platform[J]. Chinese Journal of Lasers, 2014, 41(8): 0816002. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201408047.htm

    [11] 付强, 张新. 基于硫系玻璃的中波红外光学系统无热化设计[J]. 红外与激光工程, 2015, 44(5): 1468-1471. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201505014.htm

    FU Qiang, ZHANG Xin. Athermalization of the medium-wave infrared optical system based on chalcogenide glasses[J]. Infrared and Laser Engineering, 2015, 44(5): 1468-1471. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201505014.htm

    [12] 宋岩峰, 邵晓鹏, 徐军. 实现复消色差的超常温混合红外光学系统[J]. 物理学报, 2008, 57(10): 6298-6303. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200810040.htm

    SONG Yanfeng, SHAO Xiaopeng, XU Jun. Design of a hybrid infrared apochromatic optical system beyond normal temperature[J]. Acta Physica Sinica, 2008, 57(10): 6298-6303. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200810040.htm

    [13] 杨胜杰. 含高次塑料非球面的头盔微光夜视物镜设计[J]. 电光与控制, 2009, 16(1): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ200901022.htm

    YANG Shengjie. Object design of helmet mounted night vision goggles with high order plastic aspherical surfaces[J]. Electronics Optics & Control, 2009, 16(1): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ200901022.htm

    [14]

    Jamieson T H. Thermal effects in optical systems[J]. Opt. Eng. , 1981, 20(2): 156-160. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1229053

    [15] 贺磊, 张建隆, 杨振, 等. 一种小型化滚-仰式长波红外光学系统设计[J]. 红外技术, 2018, 40(12): 1142-1148. http://hwjs.nvir.cn/article/id/hwjs201812005

    HE Lei, ZHANG Jianlong, YANG Zhen, et al. Design of a small rolling-pitching long-wave infrared optical system[J]. Infrared Technology, 2018, 40(12): 1142-1148. http://hwjs.nvir.cn/article/id/hwjs201812005

    [16] 张以谟. 应用光学[M]. 北京: 电子工业出版社, 2010: 491-492.

    ZHANG Yimo. Journal of Applied Optical[M]. Beijing: Publishing House of Electronics Industry, 2010: 491-492.

    [17] 张良. 凝视型红外光学系统中的冷反射现象[J]. 红外与激光工程, 2006, 35(z1): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2006S2002.htm

    ZHANG Liang. Narcissus in starting infrared optical system[J]. Infrared and Laser Engineering, 2006, 35(z1): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2006S2002.htm

    [18] 张建隆, 潘鑫, 贺磊, 等. 全视角高精度三维测量仪光学系统误差分析研究[J]. 应用光学, 2018, 39(3): 392-399. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201803018.htm

    ZHANG Jianlong, PAN Xin, HE Lei, et al. Error analysis of optical system for full view and high precision three-dimensional measuring instrument[J]. Journal of Applied Optics, 2018, 39(3): 392-399. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201803018.htm

  • 期刊类型引用(1)

    1. 肖沁,李正周,刘海毅. 基于场景自适应方向引导滤波的红外成像非均匀性校正方法. 光子学报. 2024(11): 253-265 . 百度学术

    其他类型引用(0)

图(14)  /  表(5)
计量
  • 文章访问数:  420
  • HTML全文浏览量:  71
  • PDF下载量:  149
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-04-26
  • 修回日期:  2022-05-10
  • 刊出日期:  2023-05-19

目录

    /

    返回文章
    返回