壁式喷头红外降温特性试验研究

付云鹏, 范骏威, 杨卫英, 袁杰, 刘梅楠, 张祥瑞

付云鹏, 范骏威, 杨卫英, 袁杰, 刘梅楠, 张祥瑞. 壁式喷头红外降温特性试验研究[J]. 红外技术, 2023, 45(5): 513-520.
引用本文: 付云鹏, 范骏威, 杨卫英, 袁杰, 刘梅楠, 张祥瑞. 壁式喷头红外降温特性试验研究[J]. 红外技术, 2023, 45(5): 513-520.
FU Yunpeng, FAN Junwei, YANG Weiying, YUAN Jie, LIU Meinan, ZHANG Xiangrui. Experimental Analysis of Infrared Cooling Characteristics of Wall-attached Nozzle[J]. Infrared Technology , 2023, 45(5): 513-520.
Citation: FU Yunpeng, FAN Junwei, YANG Weiying, YUAN Jie, LIU Meinan, ZHANG Xiangrui. Experimental Analysis of Infrared Cooling Characteristics of Wall-attached Nozzle[J]. Infrared Technology , 2023, 45(5): 513-520.

壁式喷头红外降温特性试验研究

详细信息
    作者简介:

    付云鹏(1988-),男,博士研究生,高级工程师,现从事船舶红外隐身技术研究。E-mail:825540041@qq.com

  • 中图分类号: TN219

Experimental Analysis of Infrared Cooling Characteristics of Wall-attached Nozzle

  • 摘要: 随着红外探测技术的发展,水幕成为舰船红外隐身研究的焦点,而对于水幕降温与水雾遮蔽两种水幕效应对红外探测特性的影响及其内在的物理机制目前尚未形成统一的认识。针对舰船8~14 μm波段的红外辐射问题,基于典型的壁式喷嘴建立壁式喷头试验系统,研究了不同喷射距离、不同喷射总流量以及不同温度钢板对壁式喷头的红外降温特性的影响。试验结果表明,当目标钢板处于中空区和中空区与覆盖区交界,红外降温速率分别为2.03℃/min和3.31℃/min,处于覆盖区时,喷射存在非重叠区和重叠区,非重叠区降温速率最大为6.18℃/min,其同半径距离下的重叠区降温速率为6.54℃/min,且此时重叠区的红外降温时长为40 s,比非重叠区缩短了32 s。喷射总流量的增加对钢板的降温表现出明显的增益性,并且钢板初始温度越高,壁式喷头对其的降温速率越快。此外,水幕内外的钢板温差最大可达8.49℃,表明壁式喷头形成的水幕喷淋能有效遮掩钢板表面温度,降低舰船表面的红外可探测性,实现水幕喷淋隐身。该研究结果可对提高舰船的红外隐身性能提供技术参考。
    Abstract: Aiming at the problem of infrared radiation in the 8-14 μm band of ships, a water curtain spray method was adopted to attenuate the infrared radiation intensity of a target, and an infrared thermal imager was employed to build a wall attached nozzle test system. Through comparative design experiments, the influences of different spraying distances, total spray flow rates, and temperatures of the steel plates on the infrared cooling characteristics of the wall nozzles were analyzed. The test results show that when the target steel plate is in the hollow area, and the boundary between the hollow area and the coverage area, the infrared cooling rates are 2.03 and 3.31℃/min, respectively. When the target steel plate was in the coverage area, there were non-overlapping and overlapping areas in the spray. The maximum cooling rate of the non-overlapping area was 6.18℃/min, and the cooling rate of the overlapping area under the same radius was 6.54℃/min. The infrared cooling time in the overlapping zone was 40 s, which was 32 s shorter than that in the non-overlapping zone. Moreover, an increase in the total spray flow resulted in a significant increase in cooling of the steel plate. The higher the initial temperature of the steel plate, the higher the cooling rate of the wall nozzle. In addition, the temperature difference between the steel plates inside and outside the water curtain can reach up to 8.49℃. Studies have shown that the water curtain spray formed by a wall-attached nozzle can effectively cover the surface temperature of the steel plate, reduce the infrared detectability of the ship surface, and realize water curtain spray stealth. These results provide a technical reference for improving the infrared stealth performance of ships.
  • 图  1   壁式喷头实物图

    Figure  1.   Physical picture of wall attached nozzle

    图  2   壁式喷头的压力-流量特性曲线

    Figure  2.   Pressure-flow characteristics curve of wall attached nozzle

    图  3   壁式喷头试验台原理图

    Figure  3.   Schematic diagram of the test bench of the wall attached nozzle

    图  4   流量特性曲线

    Figure  4.   Flow characteristic curves

    图  5   喷射范围示意图

    Figure  5.   Schematic diagram of spray range

    图  6   水敏试纸灰度化

    Figure  6.   Grayscale of water sensitive test paper

    图  7   壁式喷头雾化颗粒直径分布

    Figure  7.   Atomized particle diameter distribution of wall attached nozzle

    图  8   钢板水浴加热图

    Figure  8.   Water bath heating diagram of steel plate

    图  9   钢板加热后热成像图

    Figure  9.   Temperature map after the steel plate is heated

    图  10   不同距离下钢板表面温度对比

    Figure  10.   Comparison of surface temperature of steel plate at different distances

    图  11   不同喷射总流量下温度随时间的变化特性曲线

    Figure  11.   Variation curves of temperature with time at different total spray flow rates

    图  12   不同温度钢板下温度随时间变化特性曲线

    Figure  12.   Variation curves of temperature with time at different temperatures of steel plate

    图  13   非重叠区与重叠区钢板表面温度对比

    Figure  13.   Comparison of surface temperature of steel plate in non-overlapping zone and overlapping zone

    表  1   不同高度下喷嘴喷射范围

    Table  1   Nozzle spray range at different heights

    No. H/m Minimum injection radius/m Maximum injection radius/m Coverage area/m
    1 0.4 1.3 3.4 2.1
    2 0.6 2.1 4.8 2.7
    3 0.8 2.2 5 2.8
    Note: H is the vertical distance between the middle spray hole and the ground.
    下载: 导出CSV

    表  2   水幕内外钢板温度

    Table  2   Steel plate temperature inside and outside the water curtain 

    Time Thermocouple/℃ Infrared thermal imaging camera/℃ Difference value/℃
    10 s 45 40.45 4.55
    20 s 43 38.28 4.72
    30 s 42.7 36.58 6.12
    40 s 41.3 34.91 6.39
    50 s 40.9 33.26 7.64
    60 s 40.4 31.91 8.49
    下载: 导出CSV
  • [1] 李辉, 牛国贤, 罗刚, 等. 细水雾红外隐身技术的仿真分析及其试验研究[J]. 液压与气动, 2017(6): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ201706003.htm

    LI Hui, NIU Guoxian, LUO Gang, et al. Simulation analysis and experimental research of water mist infrared stealth technology[J]. Hydraulics & Pneumatics, 2017(6): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ201706003.htm

    [2] 李艇, 付云鹏, 杨卫英. 水面舰船红外隐身总体设计分析[J]. 红外技术, 2020, 42(2): 134-138. http://hwjs.nvir.cn/article/id/hwjs202002005

    LI Ting, FU Yunpeng, YANG Weiying. Analysis of the overall design of infrared stealth for surface ships[J]. Infrared Technology, 2020, 42(2): 134-138. http://hwjs.nvir.cn/article/id/hwjs202002005

    [3] 袁江涛, 杨立, 陈翾, 等. 现代舰船红外辐射及其控制策略分析[J]. 激光与红外, 2006(10): 943-947. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200610008.htm

    YUAN Jiangtao, YANG Li, CHEN Yi, et al. Analysis of infrared radiation of modern ships and its control strategy[J]. Laser and Infrared, 2006(10): 943-947. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200610008.htm

    [4] 高山. 水面战斗舰艇隐身设计浅探[J]. 船舶, 2008, 12(6): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ200806005.htm

    GAO Shan. Stealth design for surface combatant ship[J]. Ship, 2008, 12(6): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ200806005.htm

    [5] 王振, 朱森林, 刘银水, 等. 旋流式复合喷头红外降温特性试验分析[J/OL]. 中国舰船研究, Doi: 10.19693/j.issn.1673-3185.02324.

    WANG Z, ZHU S L, LIU Y S, et al. Experimental analysis of infrared cooling characteristics of swirl atomizer composite nozzle[J/OL]. Chinese Journal of Ship Research, Doi: 10.19693/j.issn.1673-3185.02324.

    [6] 赵世明, 陈翾. 舰船水雾红外消光的性能优化[J]. 红外技术, 2017, 39(6): 553-557. http://hwjs.nvir.cn/article/id/hwjs201706013

    ZHAO Shiming, CHEN Xuan. Performance optimization of infrared extinction of ship water fog[J]. Infrared Technology, 2017, 39(6): 553-557. http://hwjs.nvir.cn/article/id/hwjs201706013

    [7] 刘喜元, 谢承利, 王丹, 等. 舰船细水雾红外隐身技术及其试验研究[J]. 中国舰船研究, 2014, 9(6): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG201406013.htm

    LIU Xiyuan, XIE Chengli, WANG Dan, et al. Infrared stealth technology of ship water mist and its experimental research[J]. Chinese Ship Research, 2014, 9(6): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG201406013.htm

    [8] 杜永成, 杨立, 张士成. 细水雾遮蔽红外辐射的数值分析[J]. 红外与激光工程, 2013, 42(8): 1967-1972. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201308004.htm

    DU Yongcheng, YANG Li, ZHANG Shicheng. Numerical analysis of water mist shielding infrared radiation[J]. Infrared and Laser Engineering, 2013, 42(8): 1967-1972. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201308004.htm

    [9]

    DU Yongcheng, YANG Li. Water mist attenuates guided laser based on Monte Carlo method[J]. Optik - International Journal for Light and Electron Optics, 2014, 125(2): 727-731. http://www.onacademic.com/detail/journal_1000036210955110_cfe3.html

    [10] 刘晓敏. 舰船水雾水膜红外隐身技术的研究[D]. 武汉: 华中科技大学, 2019.

    LIU Xiaomin. Research on Infrared Stealth Technology of Ship Water Fog and Water Film[D]. Wuhan: Huazhong University of Science and Technology, 2019.

    [11] 万新斌, 于姝雯. 舰船水幕系统设计方法研究[J]. 舰船科学技术, 2019, 41(8): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201915014.htm

    WAN Xinbin, YU Shuwen. Research on design method of ship water curtain system[J]. Ship Science and Technology, 2019, 41(8): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201915014.htm

    [12]

    Hiroki Gonome, Taichi Nagao, Yuto Takagi, et al. Protection from thermal radiation of hazardous fires: Optimizing microscale droplet size in mist barriers using radiative transfer analysis[J]. Process Safety and Environmental Protection, 2020, 143: 114-120. http://www.sciencedirect.com/science/article/pii/s0957582020315846

    [13] 李慧子, 朱森林, 刘银水. 气助式复合喷头红外降温特性试验分析[J]. 船海工程, 2020, 49(6): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-WHZC202006002.htm

    LI Huizi, ZHU Senlin, LIU Yinshui. Experimental analysis of infrared cooling characteristics of air-assisted composite sprinklers[J]. Ship and Sea Engineering, 2020, 49(6): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-WHZC202006002.htm

    [14]

    Gonome Hiroki, Takagi Yuto, Nagao Taichi, et al. Effect of soot on thermal radiation shielding performance of water mist[J]. Fire Safety Journal, 2021, 123: 103363. http://www.sciencedirect.com/science/article/pii/S0379711221001041

    [15] 付健, 赵建辉, 李帆, 等. 基于水幕的舰船红外干扰策略研究[J]. 应用光学, 2021, 42(3): 404-412.

    FU Jian, ZHAO Jianhui, LI Fan, et al. Research on infrared interference strategy of ship based on water screen[J]. Applied Optics, 2021, 42(3): 404-412.

    [16] 郭娜, 刘思瑶, 须晖, 等. 基于图像处理的雾滴粒径检测方法[J]. 沈阳农业大学学报, 2021, 52(1): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SYNY202101012.htm

    GUO Na, LIU Siyao, XU Hui, et al. A method for detecting fog droplet size based on image processing[J]. Journal of Shenyang Agricultural University, 2021, 52(1): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SYNY202101012.htm

    [17] 卢辉, 王向伟, 吕绪良, 等. 水雾的热红外伪装性能分析[J]. 红外技术, 2009, 31(11): 646-649. DOI: 10.3969/j.issn.1001-8891.2009.11.007

    LU Hui, WANG Xiangwei, LU Xuliang, et al. Analysis of Thermal Infrared Camouflage Performance of Water Mist[J]. Infrared Technology, 2009, 31(11): 646-649. DOI: 10.3969/j.issn.1001-8891.2009.11.007

图(13)  /  表(2)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  33
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 修回日期:  2023-01-30
  • 刊出日期:  2023-05-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日