Correction Method of Surface Temperature Difference of UHV Heating Equipment under the Influence of Environmental Factors
-
摘要: 1000 kV电容式电压互感器(Capacitor Voltage Transformer, CVT)、1000 kV气体绝缘金属封闭开关设备GIS(Gas Insulated Switchgear)出线套管、1000 kV避雷器是特高压变电站内主要的电压致热型设备,其内部缺陷具有表面温差小、热点不明显的特点,且易受环境因素影响,通常需要在理想环境条件下开展红外精确测温进行缺陷诊断。然而若现场环境条件短时间内无法满足要求,则可能导致缺陷的进一步发展,因此有必要研究非理想环境条件下测温结果的修正方法。本文建立了3类特高压电压致热型设备的温度场仿真计算模型,结合传热学理论研究了光照强度、环境温度、风速大小等环境因素对特高压电压致热型设备表面温差的影响规律,结果显示,3种因素的增强均会导致表面温差不同程度地下降,需将其修正至理想环境条件下的真实温差。最后利用数据拟合的方法,获得各类环境因素影响下实测温差与真实温差的曲线表达式,进一步总结出非理想环境条件下特高压电压致热型设备表面温差的修正方法,并通过变电站现场应用验证了修正结果的准确性。Abstract: The main voltage heating equipment in UHV substations consists of 1000 kV CVTs, 1000 kV GIS outlet bushings, and 1000 kV arresters. They exhibit small differences in surface temperature and are easily exposed to environmental factors. Precise infrared temperature measurements are typically performed to diagnose defects under ideal environmental conditions. However, if the onsite environmental conditions cannot meet the requirements in a short time, further defects may occur. Therefore, it is necessary to study a correction method for temperature measurement results under non-ideal environmental conditions. In this study, three types of UHV heating equipment temperature field simulation models were established and combined with the theory of heat transfer to study the influence of environmental factors such as light intensity, temperature, and wind speed on the surface temperature difference of UHV heating equipment. The results revealed that the enhancement of these three factors decreased to varying degrees the surface temperatures that needed to be corrected to the true temperature difference under ideal environmental conditions. Finally, data fitting was used to obtain a curve expressing the measured and real temperature differences, and the correction method of the surface temperature difference of the UHV heating equipment under non-ideal environmental conditions. The accuracy of the correction results was verified through the field application of a substation.
-
Keywords:
- environmental factors /
- voltage heating /
- infrared thermometer /
- correction method
-
-
表 1 非理想环境条件参数
Table 1 Non-ideal environmental conditions parameters
Non-ideal environmental
conditionsLight intensity Temp-
eratureWind speed Condition 1: sunny summer day at noon 10000 lx 35℃ 2m/s Condition 2: overcast in autumn 200 lx 15℃ 6 m/s Condition 3: cloudy in summer 4000 lx 32℃ 4 m/s Condition 4: sunny winter 6000 lx 5℃ 2 m/s Condition 5: autumn evening 800 lx 23℃ 3 m/s 表 2 非理想环境条件下测温图谱
Table 2 Thermal images under non-ideal environmental conditions
Environmental conditions Spectrum of CVT Spectrum of arrester Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 表 3 非理想环境条件下测试数据
Table 3 Test data under non-ideal environmental conditions
Condi-
tionsCVT Arrester τ/K τ0′/K Diagnostic results τ/K τ0′/K Diagnostic results Condi-
tion 10.22 2.21 Flawed 0.03 0.65 Flawed Condi-
tion 22.23 2.41 Flawed 0.66 0.71 Flawed Condi-
tion 30.86 2.28 Flawed 0.21 0.67 Flawed Condi-
tion 40.95 2.32 Flawed 0.35 0.67 Flawed Condi-
tion 51.84 2.36 Flawed 0.52 0.68 Flawed -
[1] 卢有盟, 王增文, 李小燕. 1000 kV特高压电容式电压互感器的研制[J]. 电力建设, 2009, 30(9): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJS201405020.htm LU Youmeng, WANG Zengwen, LI Xiaoyan. Development of 1000 kV UHV capacitance voltage transformer[J]. Electric Power Construction, 2009, 30(9): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJS201405020.htm
[2] 余良清, 吴文海, 郑宇宏, 等. 特高压1000kVGIS出线复合套管的研制[J]. 电瓷避雷器, 2016(6): 6-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DCPQ201606002.htm YU LiangQing, WU Wenhai, ZHENG Hongyu, et al. Development of terminal composite bushing for UHV 1000kV GIS[J]. Insulators and Surge Arresters, 2016(6): 6-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DCPQ201606002.htm
[3] 桑建平, 吴亮, 刘云蔚, 等. 复合外套无间隙金属氧化物避雷器热特性试验研究[J]. 电瓷避雷器, 2015(3): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DCPQ201503011.htm SANG Jianping, WU Liang, LIU Yunwei, et al. Study on the thermal characteristic of polymeric housed MOA without gap[J]. Insulators and Surge Arresters, 2015(3): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DCPQ201503011.htm
[4] 林其雄, 曾文斐, 区伟明, 等. 电压型致热设备温度统计分析[J]. 电瓷避雷器, 2017(4): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DCPQ201704007.htm LIN Qixiong, ZENG Wenfei, QU Weiming, et al. Temperature statistics analysis of voltage type heating equipment[J]. Insulators and Surge Arresters, 2017(4): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DCPQ201704007.htm
[5] 刘振, 谌柳明, 江海涛. 特高压变电站扩建工程管理[J]. 山东电力技术, 2019, 46(6): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDJ201905017.htm LIU Zhen, ZHAN Liuming, JIANG Haitao. Analysis of construction management of expansion project of UHV substation[J]. Shandong Electric Power, 2019, 46(6): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDJ201905017.htm
[6] 张金岗. 红外测温技术在氧化锌避雷器带电检测中的应用[J]. 高压电器, 2015, 51(6): 200-204. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ201506035.htm ZHANG Jingang. Application of infrared temperature measurement technology to live detection of Zinc Oxide arrester[J]. High Voltage Apparatus, 2015, 51(6): 200-204. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ201506035.htm
[7] 朱振华, 周华, 于大洋, 等. 一起110 kV油浸式变压器高压套管异常发热缺陷诊断[J]. 山东电力技术, 2020, 47(12): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDJ202012008.htm ZHU Zhenhua, ZHOU Hua, YU Dayang, et al. Diagnosis of abnormal heating defect of high voltage bushing of 110 kV oil immersed transformer[J]. Shandong Electric Power, 2020, 47(12): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDJ202012008.htm
[8] 王政, 郭峰, 杨锟, 等. 基于多种试验综合诊断的CVT电压异常故障分析[J]. 山东电力技术, 2019, 46(11): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDJ201911011.htm WANG Zheng, GUO Feng, YANG Kun, et al. Analysis of CVT voltage abnormal fault based on comprehensive diagnosis of multiple tests[J]. Shandong Electric Power, 2019, 46(11): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDJ201911011.htm
[9] 马继先, 杨青, 郭亮, 等. 影响电力设备红外检测准确性因素的分析研究[J]. 华北电力技术, 2012(8): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDJ201208016.htm MA Jixian, YANG Qing, GUO Liang et al. Research on promoting the accuracy of electrical equipment diagnosing with infrared detection[J]. North China Electric Power, 2012(8): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDJ201208016.htm
[10] 廖盼盼, 张佳民. 红外测温精度的影响因素及补偿方法的研究[J]. 红外技术, 2017, 39(2): 173-177. http://hwjs.nvir.cn/article/id/hwjs201702012 LIAO Panpan, ZHANG Jiamin. Research on influence factors for measuring and method of correction in infrared thermometer[J]. Infrared Technology, 2017, 39(2): 173-177. http://hwjs.nvir.cn/article/id/hwjs201702012
[11] 张嘉旻, 周越, 郭洁, 等. 温度对交流无间隙金属氧化物避雷器状态检测的影响[J]. 电瓷避雷器, 2017(6): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-DCPQ201706010.htm ZHANG Jiemin, ZHOU Yue, GUO Jie, et al. Influence of temperature on condition detection of ac moa without gaps [J]. Insulators and Surge Arresters, 2017(6): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-DCPQ201706010.htm
[12] 卢知非, 刘浩宇, 陈文亮, 等. 红外人体测温精度补偿方法研究[J]. 红外技术, 2021, 43(9): 895-901. http://hwjs.nvir.cn/article/id/9b7f0122-fd48-4a89-825d-0dadbdafdc2e LU Zhifei, LIU Haoyu, CHEN Wenliang, et al. Accuracy compensation method for infrared human body temperature measurement accuracy[J]. Infrared Technology, 2021, 43(9): 895-901. http://hwjs.nvir.cn/article/id/9b7f0122-fd48-4a89-825d-0dadbdafdc2e
[13] 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006. YANG Shiming, TAO Wenquan. Heat Transfer[M]. Beijing: Higher Education Press, 2006.
[14] 彭子健, 李宁, 李娜, 等. 风速和温度对红外热像检测绝缘子的影响分析[J]. 电瓷避雷器, 2019(3): 197-203. https://www.cnki.com.cn/Article/CJFDTOTAL-DCPQ201903034.htm PENG Zijian, LI Ning, LI Na, et al. Analysis of effect of wind speed and temperature on infrared thermal image detection of insulators[J]. Insulators and Surge Arresters, 2019(3): 197-203. https://www.cnki.com.cn/Article/CJFDTOTAL-DCPQ201903034.htm
[15] 周建国, 雷民, 杨楚明, 等. 带电设备红外诊断应用规范: DLT 664- 2016[S]. 北京: 中国电力出版社, 2017. ZHOU Jianguo, LEI Min, YANG Chuming, et al. Application Rules of Infrared Diagnosis for Live Electrical Equipment[S]. Beijing: China Electric Power Press, 2017.
-
期刊类型引用(6)
1. 王永生,姬嗣愚. 基于深度学习的目标检测算法综述. 计算机与数字工程. 2023(06): 1231-1237 . 百度学术
2. 方丽娟,张常友. 基于多特征融合的红外图像行人检测研究. 激光杂志. 2022(03): 114-117 . 百度学术
3. 顾佼佼,李炳臻,刘克,姜文志. 基于改进Faster R-CNN的红外舰船目标检测算法. 红外技术. 2021(02): 170-178 . 本站查看
4. 林浩,马可可,牛阿云,庄家俊. 基于远红外成像技术的车载夜间行人检测方法. 现代计算机. 2021(04): 64-68+97 . 百度学术
5. 田珊. 基于D-S证据理论的红外图像行人检测. 科技通报. 2021(07): 52-56 . 百度学术
6. 张国荣,刘炳君,付成丽. 基于Python和CNN的数字验证码识别. 太原师范学院学报(自然科学版). 2020(03): 62-65 . 百度学术
其他类型引用(3)