Ceramic Package Structure Optimization and Reliability Analysis for Uncooled Infrared Detectors
-
摘要: 陶瓷封装是非制冷红外探测器最主流的封装形式,封装的低成本、小型化和高可靠性是发展方向。在某款陶瓷封装探测器结构的基础上,提出一种优化结构,优化后成本降低约5%、体积缩小约30%。基于ANSYS Workbench有限元分析软件,从网格数量无关性验证出发,分析了非制冷红外探测器陶瓷封装原始结构和优化结构各组件在10.2G随机振动环境和500g半正弦波冲击振动环境的最大等效应力和最大形变,结果显示两种结构均满足可靠性要求。在此基础上,本文对优化结构红外窗口的不同材料和不同厚度进行了500g半正弦波冲击振动环境可靠性仿真,结果表明:0.3 mm~1.0 mm厚度锗窗口和硅窗口均满足可靠性要求,最大等效应力和最大形变与窗口厚度呈负相关,相同厚度的红外窗口,硅窗口比锗窗口可靠性表现更好。本文的研究为非制冷红外探测器陶瓷封装形式的后续结构设计和仿真计算提供了参考。Abstract: Ceramic packaging is the most common packaging form used for uncooled infrared detectors. The low cost, miniaturization, and high reliability of packaging are its key development directions. This paper proposes an optimized design that can reduce the cost and volume by nearly 5% and 30%, respectively, compared to an existing ceramic packaging structure. First, the independence of the grid number is proved. Then, the maximum equivalent stress and maximum deformation of each component of the original and optimized structures of the uncooled infrared detector ceramic packaging were analyzed under two conditions: a 10.2G random vibration and a 500g half-sine wave shock employing ANSYS Workbench. The results show that both structures meet the reliability requirements. In addition, reliability simulation for different materials and different thicknesses of the infrared window of the optimized structure was conducted under a 500g half-sine wave shock condition. The results show that both germanium and silicon windows with thicknesses from 0.3 mm to 1.0 mm meet the reliability requirements, and there is a negative correlation between the thickness of the window and maximum equivalent stress, as well as maximum deformation. For infrared windows with the same thickness, the reliability of the silicon infrared window was better. This study provides a reference for the subsequent structural design and simulation calculation of the ceramic packaging of an uncooled infrared detector.
-
0. 引言
微光图像数字化是微光夜视技术的发展趋势,实现微光数字化主要有ICCD(Intensified Charge Coupled Device,ICCD)、EMCCD(Electron-Multiplying Charge Coupled Device,EMCCD)、EBCCD(Electron-BomBarded Charge Coupled Device)、EBCMOS(Electron-BomBarded CMOS,EBCMOS)等途径[1-3]。EBCMOS器件利用电子敏感BCMOS图像传感器(以下将“BCMOS图像传感器”简称为“BCMOS”)将传统微光像增强器的微通道板(Microchannel Plate,MCP)和荧光屏部件替代,使光激发阴极产生的光电子在高压电场作用下直接轰击电子敏感BCMOS实现电子倍增及数字图像信号输出,其具有高灵敏度、低噪声、较低功耗和可进行单光子成像等优点,是一种理想的新型微光成像器件[4-7]。
具有电子敏感特性的BCMOS作为EBCMOS探测器的核心部件,其电子倍增系数、暗电流等参数直接影响EBCMOS探测器最低可工作照度、信噪比等指标。Barbier R.[8]等指出,将BCMOS的硅外延层厚度减薄至8 μm左右,通过离子注入工艺在硅表面形成重掺杂P+层,并经激光退火等工艺可实现具有电子敏感特性的BCMOS制备,但该工艺复杂、对设备依赖度高,难以在国内开展类似研究。王生凯[9]、乔凯[10]等提出,采用氧化铝钝化层的BCMOS具有电子敏感特性,并通过实验证明了厚度为10 nm的氧化铝钝化层对提高电子倍增系数、抑制暗电流的有效性。EBCMOS探测器在工作时电子会持续轰击BCMOS,Nathan Eric Howard[11]等对采用SiO2、Si3N4等材料做钝化层的BCMOS在经受离子、高能电子、高能射线照射后的暗电流增加原因进行了分析,但低能电子轰击对氧化铝钝化层的BCMOS暗电流的影响因素不完全清楚。
本文针对上述问题,模拟EBCMOS探测器制备工艺及工作条件,在特定入射电子能量、累计轰击电子剂量条件下,对研制的厚度为10 nm的氧化铝钝化膜BCMOS电子轰击后暗电流变化规律进行研究,并基于已有CMOS图像传感器暗电流产生理论,分析了暗电流增加的主要原因。
1. 实验
该实验基于国内某款CMOS,通过对其表面进行减薄处理后,将该芯片与基座进行共晶粘接、打线,获得减薄BCMOS,然后采用电子束蒸镀的方式进行钝化层制备。利用高能电子轰击铝靶产生铝蒸汽,在腔体中通入高纯氧与铝蒸汽反应产生氧化铝,氧化铝膜沉积在基底上,沉积速率为0.5Å/s,镀膜中采用晶体膜厚仪对氧化铝膜层厚度进行实时监测,实现对镀膜速率和厚度的自动控制。电子束蒸镀法具有薄膜均匀性好、孔洞少、工艺条件简单、适合于批量生产等优势,本次实验氧化铝膜层厚度为10 nm。
本次实验采用的实验装置是自主研制的低能电子轰击BCMOS图像传感器测试设备,测试设备如图 1所示。其中多级连微通道板(MCP)组、BCMOS放置于真空腔体内部,腔体真空度优于5×10-8 Pa。真空腔室外部设置有紫外光源、透紫外玻璃窗口、多路高压偏置电路、微电流计、BCMOS图像传感器信号读出装置及其成像测试板,以及计算机。其中BCMOS信号读出装置可实现真空腔体内部BCMOS信号与真空腔体外部成像测试板的电信号连通,通过上位机软件可以实现对BCMOS光电参数的控制以及测试数据的快速处理,可实现暗电流、平均输出灰度值、信噪比等参数的测量。
测量方法为:①将待测试的BCMOS安装在真空腔室内,利用超高真空排气系统对真空腔室排气,待真空腔室内部真空度优于1×10-6 Pa时,利用烘箱对真空腔室进行200℃的烘烤除气处理,将真空腔室内部真空度提高至5×10-8 Pa以上,使得电子敏感BCMOS所处状态尽可能接近其在EBCMOS探测器内部工作的状态;②真空腔室烘烤结束且温度恢复室温后,如图 1连接所示,开启紫外灯光,使得紫外光经过石英玻璃观察窗进入真空腔室内部,激发MCP发射光电子,激发的光电子在多级联MCP倍增后形成轰击电子束源,通过调节多级连MCP倍增电压和输出电压参数,可以控制入射至BCMOS表面的电子束密度和轰击能量,并通过BCMOS地引线可获得轰击到BCMOS表面电子束密度的测量;③在特定剂量电子束轰击BCMOS后,通过成像测试板监测BCMOS的暗电流数值,获得轰击电子能量、累计轰击电子数与BCMOS暗电流对应关系。
2. 实验结果及分析
2.1 实验结果
本文实验包括3方面内容:①同一样品在不同电压轰击时暗电流变化情况;②相同钝化层厚度的2只样品在不同电压轰击时暗电流变化情况;③电子轰击后BCMOS静置状态下暗电流变化情况。
1)同一样品在不同电压轰击时暗电流变化
将制备的氧化铝钝化层BCMOS装入低能电子轰击BCMOS图像传感器测试设备,进行烘烤除气处理,系统真空度达到4.5×10-8 Pa后,测量该传感器初始暗电流为150 e-/pixel/s,然后通过调节紫外光源强度、多级联MCP电压,使得入射到BCMOS表面的电子密度达到(40±1)nA/cm2;通过调节MCP输出端电压,使得输出电压分别达到-300 V、-600 V、-900 V、-1200 V和-1500 V,且在每个电压条件下轰击时间均为4 h,当轰击时间达到4 h时,关闭上述紫外光源和MCP输出端各极电压,监测BCMOS的暗电流数值,暗电流数据如表 1所示。由表 1可知,当轰击电子能量为300 eV时,BCMOS暗电流增长不足5%,轰击电压调制600 eV后,BCMOS暗电流逐渐增加,增长超过5倍,且随着累计轰击电子数增加,暗电流明显增加,但增长速率有所减小,最后达到最大值12000 e-/pixel/s。
表 1 不同电压条件轰击后暗电流监测值Table 1. Dark current monitoring values after bombardment under different voltage conditionsBombardment electron energy/eV Dark current/(e-/pixel/s) Dark current growth rate 1 300 157 4.7% 2 600 986 528.0% 3 900 3827 288.1% 4 1200 9815 156.5% 5 1500 12000 22.3% 2)不同样品在不同电压轰击条件下暗电流变化
为了验证电压对暗电流影响,将制备的2只厚度为10 nm的氧化铝钝化层BCMOS分别装入低能电子轰击BCMOS图像传感器测试设备,进行烘烤除气处理,系统真空度达到4.5×10-8 Pa后,通过调节紫外光源强度、多级联MCP电压,使得入射到BCMOS表面的电子密度达到(40±1)nA,并调节MCP输出端电压,使得输出电压分别达到-1200 V和-1500 V,并在轰击过程中监测BCMOS图像传感器的暗电流数值,具体数据如图 2所示。由图 2可知,在轰击初始时刻,暗电流随累计轰击电子数成线性增加,且电子轰击能量越大,暗电流增加速率越大,随着累计电子轰击数增加,暗电流增加速率减小,且最终均趋于饱和,饱和值约为12000 e-/pixel/s。
3)电子轰击样品大气环境静置后暗电流变化数据
将电子轰击后BCMOS存储在电子干燥柜中,并每隔24 h在大气条件下,按照通用测试方法对其暗电流数值进行监测,其暗电流变化如图 3所示,其在静置初期,暗电流减小速率较大,随着静置时间延长,暗电流减小速率减小,并趋于稳定值,其整体衰减趋势为指数衰减。
2.2 实验分析
电子轰击BCMOS图像传感器时,入射电子首先进入钝化层内部,通过电离、晶格碰撞散射等方式损伤部分能量,然后进入硅材料内部,通过与硅原子碰撞散射,或使硅电离产生电子空穴对,并在内建电场作用下使得电子向体内漂移,由于本实验仅研究1.5 keV以内电子轰击情况,根据前期研究,入射电子能量为2 keV时其入射深度约为50 nm[8],因此上述碰撞电离过程均发生在表面50 nm以内的深度。
电子轰击固体材料表面时,可能会产生X射线,Nathan Eric Howard给出了电子轰击硅基材料时X射线发生率,如图 4所示[11],入射电子能量超过1.8 keV时,会产生软X射线,本实验所研究的轰击电子能量不超过1.5 keV,则可不考虑X射线对BCMOS造成的影响。
根据上述分析,本实验电子轰击后引起的BCMOS暗电流增加,主要与BCMOS钝化层、钝化层与硅界面或硅表面晶格损伤有关,为进一步明确暗电流增加的内在原因,特基于蒙特卡洛仿真、电子轰击造成硅晶格损伤机理,以及Shockley-Read-Hall理论3个方面进行了分析,具体如下:
1)钝化层电子模拟仿真
为分析电子轰击引起钝化层变化对暗电流的影响,特利用CASINO软件对入射电子在钝化层内部的运动轨迹进行仿真研究。仿真基本参数条件为:P型硅衬底厚度10 μm,氧化铝厚度10 nm,入射电子能量分别为300 eV、600 eV,入射角度为90°,仿真结果如图 5所示。
如图 5(a)所示,当电子能量为300 eV时,电子最大入射深度约为7 nm,无法到达钝化层与硅界面;如图 5(b)所示,当电子入射能量为600 eV时,部分电子可穿过钝化层。根据电子轰击过程中当电子能量为300 eV时,暗电流几乎不变,而电子轰击能量增加至600 eV以后时,暗电流开始增加,据此可以推断,暗电流增加与透过钝化层的电子有关系。
2)入射至硅晶体内部电子引起硅晶格损伤分析
当晶格原子接受的能量达到某一临界值(称为原子位移阈值),晶格原子将离开原来的格点位置,发生原子位移,产生点缺陷,这种晶格损伤是永久损伤。
位移损伤会诱发CMOS体Si禁带中的空位-间隙对和体缺陷的产生,入射粒子能量越大,晶格内发生位移的原子就越多,从而形成新的复合中心,从而使载流子的迁移率减小,电阻率增加,少数载流子寿命降低,体缺陷会成为载流子的散射中心,从而使载流子迁移率降低,这相应地增加了耗尽区的宽度,少子寿命随辐照注量的增加而减少,这都会造成CMOS体暗电流增大[12]。
晶格原子的位移阈值能量Ed描述晶体受辐照损伤的难易程度,Ed取决于晶体结构/掺杂等情况,对硅和锗等四面键合结构,Baiierlein和Sigmund给出了Ed=6~16 eV的结果,Lofershi给出的结果为12.9 eV[12]。而本实验入射电子能量最大为1.5 keV,可利用公式(1)计算碰撞能量传递。
$$E_{\mathrm{A}}=2 E\left(E+2 m_{\mathrm{e}} c^2\right) /\left(M c^2\right)$$ (1) 式中:M为晶格原子静止质量;me为入射电子质量;E为入射电子能量;c为光速。
根据公式(1)计算可得,当入射电子能量为1.5 keV时,EA约为0.15 eV,远小于位移阈值能量Ed,并且在本实验中,电子轰击后暗电流有恢复至初始状态的趋势,这与晶格损伤为永久损伤的特性相悖,具体判断,本实验暗电流增加主要是由于钝化层与硅界面处缺陷增加所致。
3)界面缺陷密度增加对暗电流影响分析
根据Shockley-Read-Hall理论模型,界面缺陷态引起的电子产生率满足公式(2),而电子产生率与BCMOS图像传感器的暗电流成正比[11]。
$$ G = \left[ {\frac{{{\sigma _{\text{p}}}{\sigma _{\text{n}}}{\upsilon _{{\text{th}}}}{N_{\text{t}}}}}{{{\sigma _{\text{n}}}\exp \left( {\frac{{{E_{\text{t}}} - {E_{\text{i}}}}}{{KT}}} \right) + {\sigma _{\text{p}}}\exp \left( {\frac{{{E_{\text{i}}} - {E_{\text{t}}}}}{{KT}}} \right)}}} \right]{n_i} $$ (2) 式中:为电子产生率;σp是空穴俘获截面;σn是电子俘获截面;Nt是缺陷能级密度;υth是电子和空穴运动速率;Et是缺陷能级能量;Ei是硅的本征费米能级;K是玻尔兹曼常数;T是绝对温度;ni为本征载流子浓度。
由公式(2)可得,暗电流与缺陷态密度成正比,根据半导体物理理论[13],半导体表面缺陷态密度最大为1015原子/cm2,其存在最大值,这与实验中观察到的暗电流存在最大值的现象吻合,根据上述分析,入射电子引起氧化铝钝化层与硅界面处缺陷态增加,是引起上述现象的主要原因。
3. 结论
本文采用电子束密度为40 nA/cm2,电子能量为300~1500 eV的电子束对厚度为10 nm的氧化铝钝化层的BCMOS图像传感器开展电子轰击实验,首先根据实验结果得,当电子能量超过600 eV时,入射电子会造成BCMOS图像传感器暗电流增加,且随着入射电子能量增加,暗电流增加速率增加,其暗电流存在最大值,约为12000 e-/pixel/s;然后根据蒙特卡洛仿真结果分析指出入射电子能量为300 eV时,电子无法达到氧化铝与硅界面,而当入射电子能量达到600 eV时,入射电子可到达氧化铝与硅界面;之后根据电子轰击硅晶格能量传递计算判断,入射能量≤1.5 keV时电子碰撞不会造成硅晶格损伤;最后根据Shockley-Read-Hall理论分析指出入射电子引起氧化铝钝化层与硅界面处缺陷态增加,是引起上述现象的主要原因。
-
表 1 某款陶瓷红外探测器优化前后各组件及整体尺寸参数
Table 1 The components and overall size parameters of a ceramic infrared detector before and after optimization
Components Size(l×w×h)/(mm×mm×mm) Original structure Windows 15.9×14.5×0.7 Kovar 20.2×18.8×0.4 Housing 22×22×2.9 Overall size 22×22×8.03 Optimization structure Windows 20.3×16.7×0.7 Housing 22×19×2.9 Overall size 22×19×6.45 表 2 各组件材料参数
Table 2 Material parameters of each component
Components Density ρ/(g·cm-3) Poisson's ratio μ Elasticity modulus E/GPa Windows -Ge 5.3 0.3 130 Kovar 8.2 0.27 157 Housing 3.6 0.23 310 Chip 2.3 0.26 170 Pin 8.2 0.37 147 表 3 各组件随机振动计算结果
Table 3 Calculation results of random vibration of each component
Components Von mises stress -3σ/MPa Deformation X-3σ/nm Deformation Y-3σ/nm Deformation Z-3σ/nm Original structure Windows 0.15 6.0 5.1 40 Kovar 0.37 6.5 5.3 18 Housing 0.41 4.7 0.37 8.3 Chip 0.1 2.1 0.19 8.0 Pin 1.0 1.2 0.75 1.4 Optimization structure Windows 0.18 4.1 3.4 35 Housing 0.49 3.3 2.7 9.1 Chip 0.95 1.9 1.3 9.1 Pin 0.94 1.1 0.54 0.84 -
[1] Rogalski A, Martyniuk P, Kopytko M. Challenges of small-pixel infrared detectors: a review [J]. Reports on Progress in Physics, 2016, 79(4): 046501. DOI: 10.1088/0034-4885/79/4/046501
[2] Fisette B, Tremblay M, Oulachgar H, et al. Novel vacuum packaged 384×288 broadband bolometer FPA with enhanced absorption in 3-14μm wavelength[C]//SPIE Defense + Security, 2017: 101771R.
[3] 王强, 张有刚. 非制冷红外焦平面探测器封装技术研究进展[J]. 红外技术, 2018, 40(9): 837-842. http://hwjs.nvir.cn/article/id/hwjs201809002 WANG Q, ZHANG Y G. Research progress of the packaging techniques for uncooled infrared focal plane arrays[J]. Infrared Technology, 2018, 40(9): 837-842. http://hwjs.nvir.cn/article/id/hwjs201809002
[4] Dumont G, Rabaud W, Yon J J, et al. Current progress on pixel level packaging for uncooled IRFPA[C]//Infrared Technology & Applications XXXVIII. International Society for Optics and Photonics, 2012: 83531I.
[5] 余黎静, 唐利斌, 杨文运, 等. 非制冷红外探测器研究进展(特邀)[J]. 红外与激光工程, 2021, 50(1): 71-85. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202101010.htm YU L J, TANG L B, YANG W Y, et al. Research progress of uncooled infrared detectors(Invited) [J]. Infrared and Laser Engineering, 2021, 50(1): 71-85. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202101010.htm
[6] DRS. Products[EB/OL]. (2021-12-1)[2021-12-30]. https://www.leonardodrs.com/media/13691./2020_u6160_lcc_mr_2012-01-481_rev08.pdf.
[7] Lynred. Products[EB/OL]. (2021-12-1)[2021-12-30]. https://lynred.com/products/pico640s.
[8] LI T, ZUO Z X, LIAO R D. Meshing Method of high precision FEM in structural simulations [J]. Chinese Journal of Mechanical Engineering, 2009, 45(6): 304-308. DOI: 10.3901/JME.2009.06.304
[9] 国防科学技术工业委员会. 军用设备环境试验方法冲击试验[S]. GJB150.18-86, 北京: 国防科学技术工业委员会军用标准化中心, 1986. National Defense Science, Technology and Industry Commission. Environmental test methods for military equipments--shock test[S]. GJB150. 18-86, Beijing: China--Military Standardization Center of national defense science, technology and Industry Commission, 1986.
[10] 中国人民解放军总装备部. 微电子器件试验方法和程序[S]. GJB 548B-2005, 北京: 总装备部军标出版发行部, 2005. The Chinese People's Liberation Army General Armaments Department. Test methods and procedures for microelectronic device[S]. GJB 548B-2005, Beijing: The Chinese People's Liberation Army General Armaments Department Military Standard Publication Distribution Department, 2005: 113-254.
[11] Yazdi N. Silicon as a mechanical material[C]//Proceedings of the IEEE, 1982: 420-457.
[12] AZOM. Supplier Data-Germanium (Ge) (Goodfellow)[EB/OL]. (2022-2-20)[2022-2-28]. https://www.azom.com/properties.aspx?ArticleID=1837.
[13] 卢健钊. 某星载天线的抗力学环境设计与动态性能分析[J]. 环境技术, 2021, 39(5): 6. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJJ202105011.htm LU J Z. Design and dynamic properties analysis of a satellite -borne antenna under mechanical environment[J]. Environmental Technology, 2021, 39(5): 6. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJJ202105011.htm
-
期刊类型引用(4)
1. 龙虎,张泓筠. 大数据量红外图像非均匀性校正仿真研究. 计算机仿真. 2019(01): 205-208 . 百度学术
2. 刘亚梅. 基于相邻像素统计一致性的非均匀性校正方法. 光子学报. 2018(07): 36-44 . 百度学术
3. 周应宝. 乒乓球运动员发球姿势三维图像校正仿真. 计算机仿真. 2017(11): 253-256+359 . 百度学术
4. 李赓飞,李桂菊,韩广良,刘培勋,江山. 红外成像系统的非均匀性实时校正. 光学精密工程. 2016(11): 2841-2847 . 百度学术
其他类型引用(6)