Small Pixel 10 μm Pitch Infrared Focal Plane Array ROIC Design
-
摘要: 研制出一款小像元10μm中心距红外焦平面探测器CMOS(complementary metal oxide semiconductor)读出电路ROIC(read out integrated circuit)。读出电路设计包括积分后读出(integration then reading,ITR)和积分同时读出(integration while reading,IWR)模式,ITR模式下有2档增益,电荷满阱容量分别为4.3 Me-和1.6 Me-,其他功能包括抗晕、串口功能控制以及全芯片电注入测试功能。读出电路采用0.18μm工艺,电源电压3.3 V,测试结果表现出良好的性能:在77 K条件下,全帧频100 Hz,读出电路噪声小于0.2 mV。本文介绍了该款读出电路设计的基本架构,分析了在小的积分电容下电路抗干扰能力的设计。在测试过程中,发现了盲元拖尾现象,分析了拖尾现象产生的原因,为解决拖尾现象设计了抗晕管栅压产生电路,最后给出了整个电路的测试结果。Abstract: A kind of infrared focal plane CMOS (complementary metal oxide semiconductor) read out integrated circuit (ROIC) for small pixel applications was developed. This ROIC design includes ITR(integration then reading) and IWR(integration while reading)functions, two gains in ITR mode, charge capacities are 4.3 Me- and 1.6 Me-. Other functions include anti-blooming, series port control function and full chip current injection test function. This ROIC was fabricated in 0.18μm process, power supply voltage 3.3 V, test result show good performance of the ROIC, full frame rate is 100 Hz, noise of readout circuit is 0.2 mV. This paper introduces the basic structure of the readout circuit design, and analyzes the design of anti-interference ability of the circuit under the condition of small integral capacitance; During the test, tailing phenomenon is found, the causes of the tailing phenomenon is analyzed and In order to solve the tailing phenomenon, the Anti-blooming voltage generation circuit is designed, and the test results of the whole circuit are given at the end of the paper.
-
Keywords:
- small pixel /
- ROIC /
- infrared focal plane detector
-
-
表 1 法国Sofradir公司推出的Daphnis产品信息
Table 1 Daphnis product information by Sofradir
Detector spectral
response3.7-4.8 μm FPA operating
temperatureUp to 110 K ROIC architecture Digital outputs
Direct injection input circuitROIC functionalities Programmable integration time
anti-blooming
Invertrevert
Bining
IWR or ITR
High dynamic rangeWindowing modes 320×4 minimum programmable Charge handling
capacity3main
Gains: 1.1Me-; 2.7Me-; 5.6Me-Frame rate Up to 85 Hz full frame rate NETD 20 mK(293 K, 70% well fill, 2.7Me-) 表 2 读出电路主要性能参数
Table 2 Main performance parameters of readout circuit
Parameters Typical value Array 1024×768 Pixel pitch 10μm Main clock 10 MHz Charge capacity Gain1:4.3 Me- Gain0:1.6Me- Output channel 8 Output voltage swing 2 V(1-3 V) Readout mode ITR/IWR 表 3 沟道电荷注入效应引起的电压变化
Table 3 Voltage change caused by channel charge injection effect
C/fF ΔV/mV 800 7.925 400 15.85 200 31.7 100 63.4 50 126.8 10 634 表 4 列放大器对保持电容影响
Table 4 Effect of column amplifier on holding capacitance
C/fF ΔV/mV ΔV'/mV 10 629.77 21.75 40 347.35 8.32 80 204.18 2.26 100 165.81 1.91 400 43.42 0.56 800 21.88 0.29 表 5 读出电路测试结果
Table 5 Read out circuit test result
IWR/ITR function Normal Window mode test Normal Serial electrical interface Normal Output voltage swing 2 V Power dissipation 150 mW Output bandwidth 10 MHz Frame rate 100 Hz Noise 0.2 mV -
[1] 杨超伟, 李东升, 李立华, 等. 小像元碲镉汞红外焦平面探测器的研究进展[J]. 红外技术, 2019, 41(11): 1003-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201911003.htm YANG Chaowei, LI Dongsheng, LI Lihua, et al. Review of small-pixel HgCdTe infrared focal plane detector[J]. Infrared Technology, 2019, 41(11): 1003-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201911003.htm
[2] 李俊斌, 李东升, 杨玉林, 等. 以色列SCD公司的III-Ⅴ族红外探测器研究进展[J]. 红外技术, 2018, 40(10): 936-945. http://hwjs.nvir.cn/article/id/hwjs201810003 LI Junbin, LI Dongsheng, YANG Yulin, et al. III-V semiconductor infrared detector research in SCD of Israel[J]. Infrared Technology, 2018, 40(10): 936-945. http://hwjs.nvir.cn/article/id/hwjs201810003
[3] 邓功荣, 赵鹏, 袁俊, 等. 锑基高工作温度红外探测器研究进展[J]. 红外技术, 2017, 39(9): 780-784. http://hwjs.nvir.cn/article/id/hwjs201709002 DENG Gongrong, ZHAO Peng, YUAN Jun, et al. Status of Sb-based HOT infrared detectors[J]. Infrared Technology, 2017, 39(9): 780-784. http://hwjs.nvir.cn/article/id/hwjs201709002
[4] Beletic J W, Blank R, Gulbransen D, et al. Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space[C]//High Energy, Optical, and Infrared Detectors for Astronomy III, 2008, 7021: 70210H.
[5] Rogalski A. Recent progress in infrared detector technologies[J]. Infrared Physics & Technology, 2011, 54(3): 136-154. http://www.researchgate.net/profile/Antoni_Rogalski/publication/241112884_Recent_progress_in_HgCdTe_infrared_detector_technology/links/5524e12e0cf22e181e73b04e.pdf
[6] Rogalski A. Next decade in infrared detectors[C]//Electro-Optical and Infrared Systems: Technology and Applications XIV, 2017, 10433: 104330L.
[7] Caulfield J, Curzan J. Small pixel infrared sensor technology[C]//Infrared Technology and Applications XLIII, 2017, 10177: 1017725.
[8] Chen T, Catrysse P B, El Gamal A, et al. How small should pixel size be?[C]//Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications, 2000, 3965: 451-459.
[9] Farrell J, Xiao F, Kavusi S. Resolution and light sensitivity tradeoff with pixel size[C]//Digital Photography II, 2006, 6069: 60690N.
[10] Lutz H, Breiter R, Eich D, et al. Small pixel pitch MCT IR-modules[C]//Infrared Technology and Applications XLII, 2016, 9819: 98191Y.
[11] Lutz H, Breiter R, Eich D, et al. Towards ultra-small pixel pitch cooled MW and LW IR-modules[C]//Infrared Technology and Applications XLIV, 2018, 10624: 106240B.
[12] Espuno L, Pacaud O, Reibel Y, et al. A new generation of small pixel pitch/SWaP cooled infrared detectors[C]//Electro-Optical and Infrared Systems: Technology and Applications XII, 2015: 9648: 96480H.
[13] Manissadjian A, Rubaldo L, Rebeil Y, et al. Improved IR detectors to swap heavy systems for SWaP[C]//Infrared Technology and Applications XXXVIII, 2012, 8353: 835334.
[14] Johnson John. Analysis of image forming systems[C]//Proceeding of SPIE- The International Society for Optical Engineering, 1958, 513(513) : 761.
[15] 周立庆, 宁提, 张敏, 等. 10 µm像元间距1024×1024中波红外探测器研制进展[J]. 激光与红外, 2019, 49(8): 915-920. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201908002.htm ZHOU L, NING T, ZHANG M, et al. Developments of 10 µm pixel pitch 1024×1024 MW infrared detectors[J]. Laser & Infrared, 2019, 49(8): 915-920. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201908002.htm
[16] Berthoz J, Rubaldo L, Maillard M, et al. MTF performance: measurements, modelisation, and optimization for Sofradir II-VI IR photodetectors[C]//Quantum Sensing and Nanophotonic Devices XII, 2015, 9370: 93700O.
[17] Reibel Y, Augey T, Verdet S, et al. High-performance and long-range cooled IR technologies in France[C]//Infrared Technology and Applications XXXIX, 2013, 8704: 87040B.
[18] Reibel Y, Rubaldo L, Manissadjian A, et al. High-performance MCT and QWIP IR detectors at Sofradir[C]//Electro-Optical and Infrared Systems: Technology and Applications IX, 2012, 8541: 85410A.
[19] Reibel Y, Rouvie A, Nedelcu A, et al. Large format, small pixel pitch and hot detectors at SOFRADIR[C]//Electro-Optical and Infrared Systems: Technology and Applications X, 2013, 8896: 88960B.
[20] Lefoul X, Pere-Laperne N, Augey T, et al. New SOFRADIR 10 µm pixel pitch infrared products[C]//Electro-Optical and Infrared Systems: Technology and Applications XI, 2014, 9249: 924911.
[21] Tan C L, Mohseni H. Emerging technologies for high performance infrared detectors[J]. Nanophotonics, 2018, 7(1): 169-197. http://www.onacademic.com/detail/journal_1000040103679310_e3b6.html
[22] Beletic J W, Blank R, Gulbransen D, et al. Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space[C]//High Energy, Optical, and Infrared Detectors for Astronomy III, 2008: 70210H.
[23] Dorn R J, Eschbaumer S, Hall D N, et al. Evaluation of the Teledyne SIDECAR ASIC at cryogenic temperature using a visible hybrid H2RG focal plane array in 32 channel readout mode[C/]//Proc. of SPIE, 2008: DOI:10.1117/12.788717.
[24] Bai Y, Bajaj J, Beletic J W, et al. Teledyne imaging sensors: silicon CMOS imaging technologies for x-ray, UV, visible, and near infrared[C]//Proc. of SPIE, 2008, 7021: 702102.
[25] 毕查德·拉扎维. 模拟CMOS集成电路设计[M]. 西安: 西安交通大学出版社, 2003. Behzad Razavi. Design of Analog CMOS Integrated Circuits[M]. Xi'an: Xi'an JiaoTong University Press, 2003.