亚波长金属光栅偏振器制备技术研究

杨江涛, 王健安, 王银, 胡啸

杨江涛, 王健安, 王银, 胡啸. 亚波长金属光栅偏振器制备技术研究[J]. 红外技术, 2021, 43(1): 8-12.
引用本文: 杨江涛, 王健安, 王银, 胡啸. 亚波长金属光栅偏振器制备技术研究[J]. 红外技术, 2021, 43(1): 8-12.
YANG Jiangtao, WANG Jianan, WANG Yin, HU Xiao. Fabrication Technology of a Subwavelength Metal Grating Polarizer[J]. Infrared Technology , 2021, 43(1): 8-12.
Citation: YANG Jiangtao, WANG Jianan, WANG Yin, HU Xiao. Fabrication Technology of a Subwavelength Metal Grating Polarizer[J]. Infrared Technology , 2021, 43(1): 8-12.

亚波长金属光栅偏振器制备技术研究

基金项目: 

国家自然科学基金青年基金 61905172

博士科研启动基金项目 20192015

来晋优秀博士奖励资金项目 20192068

详细信息
    作者简介:

    杨江涛(1988-),男,汉族,山西运城人,博士,讲师,研究方向:MEMS惯性器件及光电传感导航方面的研究。E-mail: yangjiangtao6567@tyust.edu.cn

  • 中图分类号: TH706

Fabrication Technology of a Subwavelength Metal Grating Polarizer

  • 摘要: 亚波长周期结构光栅具有传统光栅所不具有的特殊特性,采用严格耦合波法设计并制作了一种柔性双层金属光栅偏振器,通过纳米压印技术在方形的PC(Polycarbonate,聚碳酸酯)上制备了周期为278 nm,深度为110 nm,占空比为0.5的亚波长光栅,通过磁控溅射技术在制作的介质光栅上沉积了70 nm的金属铝层,制作了具有双层金属结构的柔性双层金属光栅偏振器,并用光谱测试系统进行了简单的性能测试。实验结果表明,当入射光波长范围在350~800 nm时,制作的柔性双层光栅偏振器偏振特性优良,且具有非常高的透过率和消光比,分别高达48%和100000。该制作工艺只由纳米压印和金属蒸镀完成,省去了复杂的涂胶、剥离及刻蚀,因此在大批量生产偏振器方面具有很明显的优势,可普遍用于光探测器件、光电开光等半导体光电子器件的制作过程。
    Abstract: Sub-wavelength periodic grating has special characteristics that are lacking in traditional grating. In this study, a flexible double-layer metal grating polarizer is designed and fabricated using a strict coupled wave method. Through nanoimprinting technology, sub-wavelength grating with a period of 278 nm, depth of 110 nm, and duty cycle of 0.5 is prepared on a square polycarbonate (PC). A 70 nm metal aluminum layer is deposited on the fabricated dielectric grating by magnetron sputtering, and a double-layer metal structure is fabricated. A flexible double-layer metal grating polarizer is developed, and the performance of the polarizer is tested using a spectrum measurement system. Experimental results showed that when the wavelength range of the incident light was 350-800 nm, the flexible double-layer grating polarizer had good polarization characteristics. The polarized light transmission efficiency and extinction ratio were as high as high as 48% and 100000, respectively. The manufacturing process involves only nanoimprinting and metal evaporation processes and thus excludes coating, stripping, and etching of the imprint adhesive. Therefore, our method exhibits evident advantages in terms of low-cost and batch production of large-area polarizers and thus can be widely used in the manufacturing process of semiconductor optoelectronic devices such as optical-detection and optoelectronic devices.
  • 图  1   金属光栅偏振示意图

    Figure  1.   Schematic of metal grating

    图  2   模板的SEM图

    Figure  2.   Scanning electron microscope (SEM) image of nanoimprint template

    图  3   模板防粘

    Figure  3.   Anti sticking of Si template

    图  4   柔性双层金属光栅偏振器的制作工艺流程图

    Figure  4.   Manufacturing process flow chart of flexible double layer metal grating polarizer

    图  5   在PC基底压印亚波长光栅

    Figure  5.   Printing subwavelength grating on PC substrate

    图  6   PC光栅结构的实物图和SEM图

    Figure  6.   Physical and SEM pictures of PC grating structure

    图  7   光栅偏振特性测试装置示意图

    Figure  7.   Schematic of laboratory measurement setup

    图  8   柔性双层金属光栅偏振器的性能测试图

    Figure  8.   Performance test chart of flexible double layer metal grating polarizer

    表  1   柔性双层金属光栅偏振器的参数

    Table  1   Parameters of subwavelength metal grating polarizer

    Materials and structures Materials and parameters
    Substrate materials PC
    Metallic materials Al
    Period/nm 278
    Duty cycle 0.5
    Aluminum thickness/nm 70
    Distance between two metal grating layers/nm 50
    PC grating height/nm 100
    下载: 导出CSV
  • [1]

    Chou S Y, Krauss P R, Renstrom P J. Imprint lithography with 25-nanometer resolution[J]. Science, 1996, 272(5258): 85-87. DOI: 10.1126/science.272.5258.85

    [2]

    Ekinci Y, Solak H H, David C, et al. Bilayer AL wire-grids as broadband and high-performance polarizers[J]. Optics Express, 2006, 14: 2323-2334. DOI: 10.1364/OE.14.002323

    [3]

    Kim S H, Lee K D, Kim J Y, et al. Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography[J]. Nanotechnology, 2007, 18: 055306/1-5.

    [4]

    YANG Z Y, LU Y F. Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions[J]. Optics Express, 2007, 15: 9510-9519. DOI: 10.1364/OE.15.009510

    [5]

    GE Z, WU S T. Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays[J]. Applied Physics Letters, 2008, 93(12): 121104-121106. DOI: 10.1063/1.2988267

    [6]

    Ahn S H, Kim J S, Guo L J. Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate[J]. Journal of Vacuum Science & Technology B, 2007, 25: 2388-2391.

    [7]

    DENG S R, LU B R, DONG B Q, et al. Effective polarization control of metallic planar chiral metamaterials with complementary rosette pattern fabricated by nanoimprint lithography[J]. Microelectronic Engineering, 2010, 87: 985-988. DOI: 10.1016/j.mee.2009.11.123

    [8]

    Suyatin D B, Sun J, Fuhrer A, et al. Electrical properties of self-assembled branched InAs nanowire junctions[J]. Nano Letters, 2008(8): 1100-1104.

    [9]

    GAO C H, WANG B, FU C, et al. Polarization-controlled grating polarizer under second Bragg incidenc with silver deposited in groove[J]. Optics Communications, 2020: 459.

    [10] 汤厚睿.氧化锌亚波长光栅偏振分束器的设计与分析[D].南京: 南京邮电大学, 2019.

    TANG H R. Design and analysis of ZnO-based sub-wavelength grating polarization beam splitter[D]. Nanjing: Nanjing University of Posts And Telecommunications, 2019.

    [11] 张冲, 胡敬佩, 周如意, 等.深紫外光栅反常偏振器件的设计与分析[J].中国激光, 2020, 47(3): 0301005.

    ZHANG C, HU J P, ZHOU R Y, et al. Design and analysis of inverse polarization grating devices for deep ultraviolet light[J]. Chinese Journal of Lasers, 2020, 47(3): 0301005.

    [12]

    Ahn She Won, Lee Ki Dong, Kim Jin Sung, et al. Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography[J]. Nanotechnology, 2005, 16: 1874-1877. DOI: 10.1088/0957-4484/16/9/076

    [13] 康果果, 谭桥峰, 陈伟力, 等.亚波长金属线删偏振器的设计、制备及偏振成像实验研究[J].物理学报, 2011, 60(1): 014218/1-7.

    KANG G G, TAN Q F, CHEN W L, et al. Design and fabrication of sub-wavelength metal wire-grid and its application to experimental study of polarimetric imaging[J]. Acta Physica Sinica, 2011, 60(1): 014218/1-7.

    [14] 康宁, 唐军, 李大林, 等.亚波长金属偏振光栅设计与分析[J].传感器与微系统, 2015, 34(2): 79-84.

    KANG N, TANG J, LI D L, et al. Design and analysis of sub-wavelength metal polarization grating[J]. Transducer and Microsystem Technologies, 2015, 34(2): 79-84.

    [15]

    WU Chienli, SUNG Chengkuo, YAO Pohung, et al. Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift[J]. Nanotechnology, 2013, 24(26): 265301/ 1-7.

    [16]

    Yamada Itsunari, Yamashita Naoto, Tani Kunihiko, et al. Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass[J]. Optics Letters, 2011, 36(19): 3882-3884. DOI: 10.1364/OL.36.003882

    [17] 常闪闪, 麻云凤, 廖利芬, 等.基于空气隙棱镜实现布鲁斯特角型偏振器消光比测量[J].红外技术, 2019, 41(9): 882-886. http://hwjs.nvir.cn/article/id/hwjs201909013

    CHANG S S, MA Y F, LIAO L F, et al. Measurement of extinction ratio of brewster angle polarizer based on air gap prism[J]. Infrared Technology, 2019, 41(9): 882-886. http://hwjs.nvir.cn/article/id/hwjs201909013

图(8)  /  表(1)
计量
  • 文章访问数:  456
  • HTML全文浏览量:  108
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-08
  • 修回日期:  2020-12-27
  • 刊出日期:  2021-01-19

目录

    /

    返回文章
    返回