一种复杂背景下红外目标稳定跟踪算法
Stable Infrared Target Tracking Algorithm Under Complicated Background
-
摘要: 针对红外单目标在长期跟踪过程中的强背景干扰、遮挡、形变以及目标特征信息减弱等实际问题,提出了一种基于跟踪-学习-检测(Tracking-Learning-Detection,TLD)框架的红外目标稳定跟踪方法.该方法在压缩跟踪算法(Compressive Tracking,CT)的基础上替换广义的类Harr特征为HOG特征,引入互补随机测量矩阵,优化纹理和灰度特征信息的权重,同时引入卡尔曼滤波器记录空间上下文位置信息,以解决CT算法和TLD算法在目标被遮挡时的跟踪失效和全局检索问题.基于TLD算法框架和改进CT算法相结合的红外图像跟踪算法有效地解决了遮挡和强干扰问题,提升了算法的跟踪准确性和长期跟踪稳定性.实验结果表明,本文提出的算法在红外地面环境中能较好地实时稳定跟踪并保持良好的准确性和鲁棒性.