基于线性混合模型的高光谱图像分布式压缩感知
Distributed Compressive Sensing for Hyperspectral Imaging Based on Linear Mixing Model
-
摘要: 为了实现高光谱图像的有效压缩采样与重构,对分布式压缩采样的高光谱数据应用线性混合模型进行重构.首先,在图像采集阶段,针对高光谱图像的空谱特性,应用分布式压缩采样策略对高光谱数据进行采集;在数据重构阶段,应用高光谱图像的线性混合模型假设,先对压缩数据进行端元数目的估计,再利用估计的端元数来估计丰度矩阵,根据端元特征信号的稀疏性质提取端元矩阵,从而重构出原始的高光谱数据,抛弃了压缩感知重构算法中高计算复杂性的欠定问题求解.实验结果表明:在压缩采样数据为总数据的20%时,重构的平均信噪比比压缩投影主成分分析算法提高了15 dB以上,同时该方法还便于获得端元和丰度信息.所设计的压缩感知方案采样方式简单,重构速度快、精度高,可应用于星载或机载的高光谱压缩感知成像.