碲镉汞红外焦平面响应图"交叉线"特征起源探讨

孔金丞, 覃钢, 秦强, 李立华, 毛京湘

孔金丞, 覃钢, 秦强, 李立华, 毛京湘. 碲镉汞红外焦平面响应图"交叉线"特征起源探讨[J]. 红外技术, 2019, 41(2): 101-106.
引用本文: 孔金丞, 覃钢, 秦强, 李立华, 毛京湘. 碲镉汞红外焦平面响应图"交叉线"特征起源探讨[J]. 红外技术, 2019, 41(2): 101-106.
KONG Jincheng, QIN Gang, QIN Qiang, LI Lihua, MAO Jingxiang. Crosshatch Pattern on HgCdTe FPA Response Imaging[J]. Infrared Technology , 2019, 41(2): 101-106.
Citation: KONG Jincheng, QIN Gang, QIN Qiang, LI Lihua, MAO Jingxiang. Crosshatch Pattern on HgCdTe FPA Response Imaging[J]. Infrared Technology , 2019, 41(2): 101-106.

碲镉汞红外焦平面响应图"交叉线"特征起源探讨

详细信息
  • 中图分类号: TN215%TN304

Crosshatch Pattern on HgCdTe FPA Response Imaging

  • 摘要: 对碲镉汞红外焦平面热响应图"交叉线"特征起源进行了研究.基于碲镉汞的闪锌矿结构晶体滑移系统理论, 讨论了不同滑移面与碲镉汞薄膜生长所用 (111) B面和 (211) B面交线的方向, 从晶格失配和应力释放的角度探讨了碲镉汞薄膜表面交叉线形貌与X射线衍射交叉线貌相的起源与几何结构, 分析了碲镉汞薄膜交叉线与材料晶体质量之间的关系, 探讨了碲镉汞红外焦平面热响应图交叉线特征的起源及其与器件性能的关系.
  • 1977年Sai-Halasz等人第一次在理论上提出了InAs/GaSb Ⅱ类超晶格(superlattices,SLs)的概念[1-2];1987年Smith和Maihiot首次提出了InAs/GaSb Ⅱ类超晶格可应用于红外探测技术的设想[3-4];1990年D. H. Chow等人第一次生长制备得到InAs/GaSb Ⅱ类超晶格[5];1994年制备出第一个p-n结InAs/GaSb Ⅱ类超晶格光电二极管[6];1997年APL报道了高性能的InAs/GaSb超晶格光电二极管[7];2003年西北大学首次研制出长波256×256焦平面探测器(FPAs),第一次实现了人像成像,工作温度为77 K[8];2006年,西北大学量子器件中心又研制出世界上第一个截止波长为5 μm的非制冷型中波256×256焦平面探测器[9];2006年德国费朗霍姆Fraunhofer IAF和AIM实验室合作首次研制出中波双色(3~4 μm和4~5.4 μm)288×384 InAs/GaSb Ⅱ类超晶格焦平面探测器[10],将其应用于欧洲大型运输机Airbus A400m的导弹预警上,标志着InAs/GaSb Ⅱ类超晶格红外探测器开始走向实用化;2008年Rodriguez等人研制出第一个nBn结构中波320×256 InAs/GaSb Ⅱ类超晶格焦平面探测器[11-12];2010年美国西北大学和喷气推进实验室先后成功地研制出规模1 k×1 k的长波InAs/GaSb Ⅱ类超晶格红外焦平面探测器[13];2011年西北大学首次报道了双色长波FPAs[14];2011年Gautam等人研制出了响应波段涵盖短波红外(SWIR)、中波红外(MWIR)和长波红外(LWIR)的三色InAs/GaSb Ⅱ类超晶格红外探测器[15];2012年西北大学Huang等人报道了世界上第一个640×512双波段InAs/GaSb Ⅱ类超晶格红外焦平面探测器,截止波长分别为9.5 μm和13 μm[16];2013年西北大学量子器件中心制备出了高性能320×256中长双色InAs/GaSb Ⅱ类超晶格焦平面探测器[17];2016年西北大学量子器件中心报道了高性能变偏压三波段短中长三色InAs/GaSb/AlSb Ⅱ类超晶格探测器[18]

    InAs/GaSb超晶格是由二元材料InAs和GaSb交替生长构成,改变超晶格的厚度与组分就能调节微带的位置,从而实现调节体材料禁带宽度的类似效果[19-21]。由于InAs/GaSb Ⅱ类超晶格材料较大的电子有效质量及电子空穴对的空间分离,使得器件具有更低的暗电流[22-24],同时具有同HgCdTe材料相近的量子效率。同HgCdTe材料相比,InAs/GaSb超晶格在长波、甚长波谱段截止波长及均匀性的可控性更好。因此在长波、甚长波、双色乃至多色红外探测器的研制InAs/GaSb二类超晶格优势明显[25-27]。近年来,InAs/GaSb Ⅱ类超晶格红外焦平面探测器的关键性能得到了迅速的提升,正逐渐接近HgCdTe红外探测器性能,显示了优良的应用前景。

    为了获得高量子效率的长波探测,InAs/GaSb超晶格周期厚度内的InAs厚度需要增加,而InAs与GaSb的失配度约为0.6%,InAs材料会在InAs/GaSb超晶格中引入张应变。随着InAs厚度的增加,引入的张应变会增加,如果不进行应变控制,材料会通过应变弛豫形成位错,从而降低超晶格材料的晶体质量,增加器件的暗电流和噪声,导致器件性能的降低。因此InAs/GaSb超晶格外延生长时需对其应变进行控制即通过界面引入压应变补偿的方式进行调节整体的应变。

    通过在超晶格周期结构内插入适当界面层的方式来实现超晶格材料的应力补偿,这表明在任何超晶格材料结构中会存在大量的界面层,从而界面结构与质量会对整个超晶格材料产生重要的影响。通过掌握生长异质界面的控制方法,对分子束外延过程中各源炉快门开关顺序的设计,达到控制界面类型,调控超晶格结构应变状态,从而实现平均应变越小越好。不同Ⅲ-Ⅴ族化合物半导体晶格常数及禁带宽度如图 1(a)所示,InAs与GaSb的带阶如图 1(b)[28]所示。

    图  1  6.1 Å材料体系的晶格常数、禁带宽度和能带排列
    Figure  1.  The lattice constant, bandgap and energy band alignment for these 6.1Å family materials

    对于MBE生长超薄异质结来说,异质结界面的设计及控制是一个主要难点[29]。由于在界面处阳离子和阴离子的变化,可以得到两种截然不同的界面结构,从而实现Ga-As或In-Sb型键合配置。在超晶格外延过程中处于富Ⅴ族元素氛围生长,自然生长情况下,每一层材料生长完后,表面都会残留该层的Ⅴ族元素原子,且在下一层材料生长初始掺入进去,所以在无意识控制界面状态下,严格意义上形成了“Ga-As-In-Sb”混合型界面[30-31],只是InAs/GaSb超晶格形成的界面从组分上更接近InSb-like界面或GaAs-like界面。As背景掺入GaSb中可以形成GaAsxSb1-xx=0.07~0.30)[32];Sb掺入InAs中的情况不会像As掺入GaSb中那么严重,但是研究人员确实观察到InSbxAs1-x的形成,其中x是Sb束流的函数[33]

    由于界面处发生互混,超晶格材料的晶格失配会增加,应变会增大,易形成位错缺陷,从而降低超晶格的晶体质量,增加缺陷中心,造成对器件光吸收和性能的影响。同时,无论是Ⅲ族元素还是Ⅴ族元素发生互混都会导致探测波长的漂移,如In和Ga的互混会导致波长的红移,As和Sb的互混会导致波长的蓝移。对于长波超晶格材料,界面控制的难度更大,在很多外延生长情况下,MBE快门开关的时间要小于0.5 s。

    本文系统介绍了MBE生长InAs/GaSb Ⅱ类超晶格材料界面的控制方法,包括生长中断法、表面迁移增强法、Ⅴ族元素浸润法和体材料生长法;讨论分析了InAs/GaSb超晶格材料界面类型选择的理论依据,如InSb界面和GaAs界面的优缺点等;简述了界面控制具体实施理论,以及相关研究机构不同红外探测波段InAs/GaSb超晶格材料所采用的界面类型及界面外延生长控制方法。

    InAs/GaSb Ⅱ类超晶格中,InSb的价带顶位于GaSb的价带顶之上,这促使空穴有趋向于InSb层聚集的特性,同时插入的InSb界面层拓宽了空穴势阱的宽度,导致超晶格的空穴微带上移,因此随着InSb界面厚度的增加,其超晶格材料对应的探测波长逐渐红移。GaAs界面对超晶格材料对应的探测波长的影响分析也类似。

    R. H. Miles等人[32]通过计算两种类型界面的InAs/InGaSb超晶格的吸收系数,发现InSb界面超晶格材料的带隙更小,吸收更高。计算结果与D. H. Chow及其同事[34-37]发布的霍尔数据非常吻合,具有InSb界面的超晶格结构显示出更高的载流子浓度。InAs/GaSb超晶格的光电导数据也表明InSb界面比GaAs界面具有在更低能量下的吸收边缘。J. Bonnet等人[38-39]报道称采用InSb界面比采用GaAs界面的超晶格质量更好,同时也允许厚结构的超晶格材料生长,其总吸收区厚度能达到几微米,以获得高光学吸收效率[40]。此外,M. S. Dalyet等人研究发现,采用InSb-like界面超晶格材料的能带交叠要比采用GaAs-like界面的大30±10 meV,但GaAs-like界面会降低超晶格微带中电子与空穴的波函数交叠程度,其超晶格带隙Eg相对较大,从而不利于保证超晶格材料的光吸收效率[41-43]

    由于In的偏析效应会导致GaSb-on-InAs界面有部分In原子掺入进GaSb层[44],自然形成InSb-like界面。同时Sb的偏析效应[45-48],InAs-on-GaSb界面Sb掺入InAs层的量过大,InAs超晶格层会形成InAsxSb1-x界面层[49]。由于InSb的晶格常数为6.4794Å,与GaSb的失配度约为6.5%,与InAs的失配度约为7%,当InSb界面厚度超过临界厚度发生弛豫时,会产生大量的位错缺陷,界面粗糙度增加,引入缺陷态能级,导致相应超晶格材料晶体质量下降[50-52]。根据Matthews和Fritz报道的公式,可以求出InSb在GaSb上外延生长的临界厚度[53-54],计算得到的InSb层厚度为特定值时可获得零失配,但实际生长后测量得到的超晶格InSb界面层的厚度和计算值之间存在差异。通过实际生长对经验关系式得到的InSb界面厚度进行微调,精确控制参数形成陡峭界面以平衡超晶格与GaSb衬底之间的应变,同时保证良好的超晶格晶体质量。

    对于InAs/GaSb超晶格在近红外及中波红外探测器方向应用,由于在超晶格周期中InAs层要求比较薄,如果仅采用InSb-like界面必然会使得超晶格与衬底失配过大,产生位错,降低探测器性能,采用混合界面是减少应变,提高探测器性能的一个折衷办法;长波(甚长波)超晶格材料需要引入InSb层界面压应变补偿来进行应变调控,但更容易受到界面组分、偏析等外延问题的影响[55-58]

    通常对界面形成进行控制的方法主要有生长中断法(interrupted growth epitaxy method)、表面迁移增强法(migration-enhanced epitaxy,MEE)、Ⅴ族元素浸润法(As soak,Sb soak)、体材料生长法。具体介绍如下:

    1)生长中断法,具体是指在某一种超晶格材料层生长完成后停滞一段时间,在此期间材料层表面处于相应的Ⅴ族束流氛围下或者无Ⅴ族束流保护,随后继续生长下一种超晶格材料层,这样就可获得所需界面类型。在中断生长过程中,Ⅴ族元素束流的大小和中断时间会对界面形态产生重要影响[26]。生长中断法中降低As/Sb置换反应和Sb在InAs层中扩散的主要方法有生长速率的降低和较小的Ⅴ/Ⅲ束流比。无保护中断法快门顺序如图 2(a)所示IF2界面。

    图  2  界面控制方法快门顺序[28]
    Figure  2.  The shutter sequence based on the interface control method

    2)表面迁移增强法,主要是指在界面形成过程中利用Ⅲ族原子的高的表面迁移速率在界面沉积一层均匀的原子层形成界面,即在超晶格界面生长时,Ⅲ族与Ⅴ族元素的束源炉快门分别开关。如在GaSb层上形成InSb界面,首先在GaSb层生长完成后,Sb束流保持一段时间,然后关闭Sb快门,无其它束流的情况下单独沉积一层In原子,随后进行InAs层的生长,如此就可得到了所需InSb层界面[50-60]。采用MEE界面生长技术,不仅可以实现对界面结构及界面厚度的精确控制,同时,由于一定量的Ⅲ族原子在GaSb层表面的提前沉积,能够有效抑制As/Sb置换反应,提高界面质量,Ⅲ族原子起到了As/Sb有效隔离的作用。Q. Xie等人发现,在Sb终止的GaSb表面上,不论As束流值为任意大小,界面均会发生As/Sb置换,促使Sb原子从表面析出并脱离表面,而在Ga终止的GaSb表面上,当As束流小于某一临界值时,As/Sb置换反应不会发生[61]。MEE控制方法的难点在于实现界面生长时所用束流的精确控制,特别是Ⅲ族元素的束流,通过在界面处沉积一层Ⅲ族原子层的方式形成相应的界面层。快门顺序如图 2(b)所示。

    3)Ⅴ族元素浸润法,即通过在超晶格界面生长过程中利用Ⅴ族元素之间的置换作用形成所需界面。Ⅴ族元素浸润法[62-64]与无保护中断法[26]在控制界面形成的原理上是一致的,都是利用了界面处As/Sb的交换反应。如在InAs-on-GaSb界面形成GaAs-like界面可采用在GaSb沉积完成之后进行As soak。

    4)体材料生长法,顾名思义,即直接外延生长所需界面类型材料。体材料生长法一般与生长中断法相结合进行界面控制。如与无保护中断法结合控制快门顺序,如图 2(a)所示IF1界面。

    迁移增强外延生长过程中,由于Ⅲ族元素单独沉积生长时缺少与Ⅴ族元素的成键,也称之为Ⅴ族限制生长的模式。类似于生长中断法的界面生长方法在其他文献报道中被称为传统的分子束外延[65]。传统分子束外延实现界面生长时,Ⅲ族与Ⅴ族的束源炉的快门同时开关。无论是传统的分子束外延还是表面迁移增强外延都是基于分子束外延技术,只是根据生长方式的不同,人为地进行了标定。

    根据已有的文献报道[59, 66],在GaSb-on-InAs界面,由于In-Sb的结合能小于In-As的结合能,Sb原子难以置换出InAs层表面以下部分的As原子,所以一般在InAs层表面形成InSb界面,才能使整个超晶格材料体系的表面能最低。GaSb-on-InAs界面不存在As的偏析情况,因而需要考虑的是减少InAs层表面残留的As原子进入GaSb层以及降低As压。相关研究机构采用直接生长InSb层的方法人为形成InSb界面,从而达到减少界面处As原子对GaSb层的掺入量。在InAs-on-GaSb界面,Sb原子的偏析主要集中在第一个InAs原子层,并且随InAs层厚度呈指数衰减。

    若通过Sb soak来获得陡峭InSb-like界面,只增加Sb soak时间,超晶格的一级峰的半峰宽(full-width half-maximum,FWHM)和超晶格与衬底的晶格失配不会发生显著变化,对超晶格表面形貌的影响也较小,因而通过控制Sb soak时间可实现对超晶格应变的细微调整[62]。若通过优化As soak参数来获得陡峭界面,InAs-on-GaSb界面的As soak束流和时间决定了界面厚度。As soak束流要足够高才能有效地移除GaSb层表面的Sb原子且避免表面分解,同时,又不能太高,太高的束流值会导致在超晶格材料中产生非辐射点缺陷。过大的As束流会造成界面基本成为InAs层,从而无法起到相应地应力补偿作用。为了提高应力补偿作用,必要的措施是有效地降低As的组分,方法之一就是采用小的As束流,但太小的As束流会降低InAs层的晶体质量。这同样适用于As soak时间[67-68]。仅仅通过驱动阴离子混合反应的力,获得陡峭的InAs/GaSb界面是有一定难度的。这是因为GaSb中As-for-Sb交换的减少需要抑制平衡GaAs相,而InAs中Sb掺入的减少需要增强平衡InAs相。因此,减少Sb掺入的生长条件将倾向于增加As交换,反之亦然。

    综上所述,生长中断法实际上难以精确控制界面的厚度,也无法阻止界面反应的发生。仅仅采用长时间Ⅴ族元素侵润法可以形成GaAs-like或者InSb-like界面,但不能通过合适地控制得到高质量的陡峭界面。与其相比,MEE法在抑制Ⅴ族元素互混方面具有显著的优势,迁移增强外延可有效地获得更长的Ⅲ族元素扩散长度,从而有利于外延层的二维生长,尤其是异质界面结构的外延,形成陡峭界面。但是生长中断法的控制要求相对简单,在设备控制精度(Ⅲ族束流、快门开关时间)受限制的情况下这种方法则是一种生长短周期超晶格较为可行的手段。

    魏亚军等人[22, 50]通过紧束缚的理论计算证明短波超晶格材料界面组分与中波超晶格材料的界面组分接近。对于短波(中波)InAs/GaSb超晶格材料,界面采用mixed-like界面,控制方法以生长中断法为主;长波(甚长波)超晶格材料界面采用InSb-like界面,控制方法采用表面迁移增强法(MEE)或Sb soak法及体材料生长相结合。

    对于不同红外探测波段的超晶格材料,相关研究机构对于超晶格界面类型及控制方法的选择也不尽相同。对于短波(中波)InAs/GaSb超晶格材料,国内以中国科学院的文献报道为例,性能最优的4ML(monolayer, ML)InAs/8ML GaSb超晶格、7ML InAs/7ML GaSb超晶格和8ML InAs/8ML GaSb超晶格均采用mixed-like界面,界面控制方法是生长中断法,若形成InSb-like界面则通过MEE法[69]或Sb soak[70]控制形成。文献报道的12ML InAs/12ML GaSb超晶格材料分别采用MEE法和传统的分子束外延生长法,证明MEE界面控制方法更有利于InSb-like界面的生长[58],快门顺序如图 3所示。

    图  3  超晶格样品在外延生长时快门开关顺序示意图[68]
    Figure  3.  Diagram of the shutter sequence during epitaxy growth of InAs/GaSb superlattice samples

    波兰研究人员报道的中波9ML InAs/9ML GaSb超晶格材料,InAs-on-GaSb界面通过As soak形成GaAs-like界面,GaSb-on-InAs界面通过Sb soak形成InSb-like界面[67]

    蒙彼利埃大学文献报道的中波10ML InAs/10ML GaSb超晶格材料,在GaSb-on-InAs界面插入1ML的InSb层,采用无保护中断法和体材料生长(传统分子束外延)来形成界面[27],快门顺序如图 2(a)所示。

    对于长波InAs/GaSb超晶格材料,半导体研究所报道的长波(8~14 μm)超晶格材料(12ML InAs+0.8ML InSb/8ML GaSb+0.8ML InSb)中的InSb-like界面采用的控制方法为MEE法[22],快门顺序如图 3(a)所示。

    文献[71]报道的长波超晶格Pin结构包含0.5 μm GaSb(Be) buffer,100周期的8ML InAs/8ML GaSb(Be),300周期的13ML InAs/8.5ML GaSb,100周期的8ML InAs(Si)/8ML GaSb,200Å InAs(Si)。采用InSb-Like界面的超晶格50%截止波长为9.6 μm,mixed-like界面的超晶格50%截止波长为10.0 μm。InSb界面控制方法为体材料生长、Sb soak及无保护中断相结合;Mixed-like界面为底部为GaAs-Like,顶部为InSb-Like。快门顺序如图 4所示。

    图  4  超晶格一个周期生长的快门顺序[58]
    Figure  4.  The shutter sequence of a periodic growth of InAs/GaSb superlattices

    新墨西哥大学报道的截止波长为~8 μm(300 K)的13ML InAs/7ML GaSb超晶格材料在GaSb-on-InAs界面上采用体材料生长的控制方法形成InSb层。比如其报道的nBn探测器的吸收区域由322个周期[1s As Soak time/13ML InAs/0.45ML InSb/7ML GaSb] SLs组成或吸收区为13ML InAs/0.73ML InSb/7ML GaSb SLs(300周期),上接触层和下接触层均为13ML InAs(Si)/0.73ML InSb/7ML GaSb SLs均是采用的InSb界面[51, 66]

    对于甚长波InAs/GaSb超晶格材料,半导体研究所报道的吸收层为15.2ML InAs/10ML GaSb超晶格(50%截止波长为13.1 μm)和吸收层为16.2ML InAs/10.75ML GaSb超晶格(50%截止波长为14.5 μm)的Pin器件结构,均采用的体材料生长和Sb soak结合的控制方法形成InSb界面[72],界面控制快门顺序如图 4(a)所示。

    海军研究实验室报道的相关文献[73]提出为了确保良好的界面,界面的生长由表面迁移增强外延控制。如文献报道的结构为8ML InAs/12 ML GaSb和1ML InSb或GaAs(指定为8-12-l),以及8-8-l和12-8-1均是通过采用MEE法来改变界面类型。

    国内外相关科研机构所采用的不同探测波段的超晶格材料界面具体控制,如表 1表 2所示。

    表  1  国内相关科研机构所采用的不同探测波段的超晶格界面类型与控制方法
    Table  1.  The interface types and control methods of InAs/GaSb superlattices in different detection wavelength bands adopted byrelated research institutions in China
    Research institutions in China InAs/GaSb SLs structure (band) Interface types and interface control methods Year
    Institute of Semiconductors 4ML InAs/8MLGaSb SLs (short wave- length) Mixed-like interface; if InSb-like interface is formed (MEE method) 2008[69]
    50 periods of 4MLInAs/8MLGaSb SLs (short-wavelength) InAs-on-GaSb interface adopt interrupted growth epitaxy method; GaSb-on-InAs interface (InSb-like interface) adopts Sb soak method 2009[70]
    InAs/GaSb (4ML/8ML) SLs and InAs/GaSb(8ML/8ML) SLs Interrupted growth epitaxy method (a combination of unprotected interruption with bulk material growth method or conventional molecular beam epitaxy)
    Long-wavelength SLs PIN structure InSb interface; mixed-like interface: InAs-on-GaSb interface adopts GaAs-Like (As soak), GaSb- on-InAs interface adopts InSb-Like (a combination of bulk material growth, unprotected interruption and V group element soak) 2011[71]
    Long-wavelength SLs Pin device: absorption layer consists of 15.2ML InAs/10ML GaSb SLs or absorption layer consists of 16.2ML InAs/10.75ML GaSb SLs InSb interface 2012[72]
    Mid-wavelength SLs (7ML InAs/7ML GaSb) Interrupted growth epitaxy method 2012[22]
    Long-wavelength SLs (12ML InAs+0.8ML InSb/8ML GaSb+0.8 ML InSb) InSb-like interface (MEE method)
    Shanghai Institute of Technical Physics 9ML InAs/12ML GaSb SLs p-i-n structure (Mid-wavelength) InSb interface (MEE method) 2011[74]
    15ML InAs/7ML GaSb SLs PBIN structure InSb interface (MEE method) 2013[75]
    50 periods of 12ML InAs/12ML GaSb SLs InSb-like interface (MEE method) 2014[68]
    下载: 导出CSV 
    | 显示表格
    表  2  国外相关科研机构所采用的不同探测波段的超晶格界面类型与控制方法
    Table  2.  The interface types and control methods of InAs/GaSb superlattices in different detection wavelength bands adopted byforeign related research institutions
    Foreign Research Institutions InAs/GaSb SLs structure (band) Interface types and interface control methods Year
    Université de Montpellier and Northwestern University An InAs/GaSb heterojunction allows a layer by layer growth mode InSb-like interface (MEE method) 2000[39]
    Université de Montpellier 10MLInAs/10MLGaSb SLs GaSb-on-InAs interface (InSb interface) adopts a combination of bulk material growth method and unprotected interrupted growth epitaxy method (conventional molecular beam epitaxy) 2004[26]
    University of New Mexico 13ML InAs/7ML GaSb SLs (~8-μm cutoff wavelength(300 K)) GaSb-on-InAs interface (InSb interface) adopts bulk material growth method or Sb-soak 2008[62]
    Absorption region of NBN detector: 322 periods of [1s As Soak time/13ML InAs/0.45ML InSb/7MLGaSb] SLs InSb interface (bulk material growth method)
    Absorption region of NBN detector: 13ML InAs/0.73ML InSb/7ML GaSb SLs (300 periods), contact layer: 13ML InAs (Si)/0.73ML InSb/7ML GaSb SLs InSb interface (bulk material growth method) 2010[49]
    Naval Research Laboratory(NRL) 40 periods of SLs structure: 8ML InAs/12ML GaSb and 1ML InSb or GaAs (8-12-l), as well as 8-8-1 and 12-8-1 Using MEE method to change the interface type[73]
    Institute of Electron Technology, Poland 9ML InAs/9ML GaSb SLs InAs-on-GaSb interface adopts GaAs-like (As soak); GaSb-on-InAs interface adopts InSb-like (Sb soak) 2011[67]
    下载: 导出CSV 
    | 显示表格

    除了研究人员熟知的常规界面控制方法快门顺序外,界面进行结构设计还可以在界面控制方法不变的基础上进行不同快门顺序的实验设计。根据相关机构报道的文献[68],InSb-like界面控制方法仍是采用MEE法或/和Sb soak法及生长中断法相结合等,实验主要是快门开关时间和次数的改变,具体实例为在InAs层生长完成后,停滞一段时间,该时间为t1,这段时间的停顿可以使得As背景尽量被抽走,紧接着打开Sb快门,Sb束流持续一段时间t2后再关闭Sb快门,促使材料层表面存在一定量的Sb,从而实现接下来的In沉积时更多地与Sb结合形成InSb。通过改变此快门设计中时间t1t2的大小,有效地降低界面处As的组分,从而实现失配度的更有效降低。实例的快门顺序如图 5所示。

    图  5  在界面控制方法不变的基础上进行不同快门顺序设计[68]
    Figure  5.  The experimental design of different shutter sequences based on the interface control method

    本文系统介绍了MBE生长InAs/GaSb Ⅱ类超晶格材料界面的控制方法大致分为生长中断法、表面迁移增强法、Ⅴ族元素浸润法和体材料生长法,概述了不同红外探测波段的InAs/GaSb超晶格材料的界面结构的选择及相应界面外延生长控制方法。对于短波(中波)InAs/GaSb超晶格材料,界面采用mixed-like界面,控制方法以生长中断法为主;长波(甚长波)超晶格材料界面采用InSb-like界面,控制方法采用MEE法或Sb soak法及体材料生长相结合。讨论分析了InAs/GaSb超晶格材料界面类型选择的依据,并简单阐述了界面控制具体实施理论,综述了相关研究机构不同红外探测波段超晶格材料所采用的界面类型及界面外延生长控制方法。通过界面结构设计来有效地提高所引入的界面层的应力补偿效果,这对于长波(甚长波)超晶格材料具有重要意义。

  • 期刊类型引用(1)

    1. 陈峰武,吕文利,龚欣,薛勇,巩小亮. 分子束外延设备国内外进展及展望. 人工晶体学报. 2024(09): 1494-1503 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  124
  • HTML全文浏览量:  31
  • PDF下载量:  59
  • 被引次数: 3
出版历程

目录

/

返回文章
返回