基于非线性模型的神经网络非均匀性校正方法
An Improved Neural Network Non-uniformity Correction Algorithm Based on Non-linear Model
-
摘要: 在低照度成像的短波红外相机中,像元响应存在非线性问题.为了克服传统的神经网络自适应校正方法只能进行线性校正的不足,提出了一种基于非线性模型的BP神经网络非均匀性校正算法,针对单一像元通过隐含层多神经元拟合像元校正曲线,有效降低拟合误差,并通过实验验证了算法的合理性.结果表明,改进算法在图像的局部非均匀性,粗糙度方面相较于传统算法分别降低了27%和28%,非线性响应像元校正曲线拟合误差降为传统算法的30%.