基于金字塔型残差神经网络的红外图像深度估计

顾婷婷, 赵海涛, 孙韶媛

顾婷婷, 赵海涛, 孙韶媛. 基于金字塔型残差神经网络的红外图像深度估计[J]. 红外技术, 2018, 40(5): 417-423.
引用本文: 顾婷婷, 赵海涛, 孙韶媛. 基于金字塔型残差神经网络的红外图像深度估计[J]. 红外技术, 2018, 40(5): 417-423.
GU Tingting, ZHAO Haitao, SUN Shaoyuan. Depth Estimation of Infrared Image Based on Pyramid Residual Neural Networks[J]. Infrared Technology , 2018, 40(5): 417-423.
Citation: GU Tingting, ZHAO Haitao, SUN Shaoyuan. Depth Estimation of Infrared Image Based on Pyramid Residual Neural Networks[J]. Infrared Technology , 2018, 40(5): 417-423.

基于金字塔型残差神经网络的红外图像深度估计

基金项目: 国家自然科学基金(61375007)%上海市科委基础研究项目(15JC1400600)
详细信息
  • 中图分类号: TP391.9

Depth Estimation of Infrared Image Based on Pyramid Residual Neural Networks

  • 摘要: 对车载红外图像进行深度估计,可应用于车辆的夜间辅助驾驶系统(Driver Assistant Systems, DAS),本文提出了一种新型的神经网络结构来估计红外图像的深度.受景物分类思想的启发,将传统深度估计方法中的回归问题转化为分类问题.首先,对红外图像进行归一化预处理,并将深度图置于自然对数空间对距离进行远近分类.其次,设计了一种新型的金字塔输入残差神经网络(Pyramid Residual Neural Networks, PRN),将红外图像以金字塔型结构作为网络输入,网络结构分为粗略特征提取和精细特征提取两部分.最后,将全连接层改为全卷积层,大大减少了网络中的参数个数,降低计算复杂度.金字塔型结构的输入使得网络能够多尺度提取特征,这使得估计出的深度图场景中的对象轮廓比同一网络单一红外图像输入估计出的景物轮廓更清晰.此外,通过计算错误和准确性评价指标,证明本文的提出方法能够很好地估计红外图像的深度,对比实验验证了本文方法更具优势.
  • 期刊类型引用(4)

    1. 赵栓峰,黄涛,许倩,耿龙龙. 面向无人机自主飞行的无监督单目视觉深度估计. 激光与光电子学进展. 2020(02): 145-154 . 百度学术
    2. 陈裕如,赵海涛. 基于自适应像素级注意力模型的场景深度估计. 应用光学. 2020(03): 490-499 . 百度学术
    3. 王倩倩,赵海涛. 基于深度CRF网络的单目红外场景深度估计. 红外技术. 2020(06): 580-588 . 本站查看
    4. 张源峰,程恩. 光学图像信息多标记特征分层识别系统设计. 激光杂志. 2020(07): 209-212 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  110
  • HTML全文浏览量:  6
  • PDF下载量:  17
  • 被引次数: 10
出版历程

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日