基于奇异值分解法的红外热图像序列处理
Sequence Processing on Thermal Infrared Images Based on Singular Value Decomposition
-
摘要: 针对脉冲涡流热成像检测技术中原始红外图像信噪比较低、温度对比性较差以及存在邻近效应和不均匀加热的问题,将奇异值分解法应用到热图序列的处理中以增强重构图像中的缺陷特征.介绍了奇异值分解法的原理,用奇异值分解法对实验中采集到的热图序列进行处理,以信噪比为指标对图像的处理效果进行评定.结果表明奇异值分解法能够抽取红外热图序列反映缺陷信息特征,可消除邻近效应和不均匀加热的影响,提高图像的信噪比.将奇异值分解法与主成分分析法比较,发现前者重构的图像质量高于后者,是处理红外热图序列的又一有效方法.