基于端元提取的高光谱异常目标检测
Anomaly Detection Algorithm Based on Endmember Extraction in Hyperspectral Imagery
-
摘要: 针对高光谱图像混合像元影响异常检测效果的问题,提出了一种基于端元提取的异常检测算法。该算法采用小波分解,将原始高光谱图像分解为高频信息图像和低频信息图像,舍弃低频信息图像,只利用高频信息图像,从而抑制了背景,突出了目标;然后使用正交子空间投影(OSP)方法提取图像的端元光谱;最后根据提取的端元光谱,采用光谱角匹配(SAM)技术完成高光谱图像的异常检测。为了验证本文方法的有效性,利用 AVIRIS 高光谱数据进行了仿真实验,取得了较好的检测效果。与其他算法相比,结果表明,本文算法的检测性能明显优于传统算法,既降低了虚警率,又大大缩短了计算时间,适用于实时的高光谱图像异常目标检测。