基于NSST和稀疏表示的多源异类图像融合方法

Multi-source Heterogeneous Image Fusion Based on NSST and Sparse Presentation

  • 摘要: 针对SAR、红外和可见光图像的灰度差异性大,融合图像感兴趣目标不突出的问题,提出一种基于NSST和稀疏表示的多源异类图像融合方法。首先将训练图像进行NSST变换,在低频系数上构建多尺度学习字典;对SAR、红外和可见光图像进行NSST变换,利用滑动窗口分解低频系数为图像块序列,对图像块序列零均值化后再稀疏分解,采用稀疏系数绝对值取大的融合规则;高频子带系数采用局部方向信息熵显著性因子取大的融合规则;最后对融合系数进行NSST逆变换得到最终的融合图像。

     

/

返回文章
返回