Space-adaptive Convolution Kernel Filtering For Infrared Dim Target Detection
-
摘要: 为了减少复杂红外图像中平滑背景边缘的影响,将具有各向异性特性的PM扩散模型应用到红外弱小目标检测,提出了空间自适应卷积核滤波检测算法,并对扩散系数进行了优化.针对模型中扩散参数难以确定的问题,提出了一种利用Sobel边缘检测算子估计扩散参数的方法.滤波后采用信噪比(SNR,Signal Noise Ratio)和接受机工作特性(ROC,Receiver Operating Characteristic)曲线进行性能评价,实验结果表明,与PM扩散模型滤波和中值滤波相比,该算法有效抑制了边缘,大大提高了信噪比,提高了检测概率,降低了虚警概率,具有更好的性能.
-
关键词:
- 弱小目标检测 /
- 空间自适应卷积核滤波 /
- 红外图像 /
- PM模型 /
- 扩散参数估计
-
-
期刊类型引用(3)
1. 骆焦煌,宋长龙. 基于改进CNN算法的视觉图像目标跟踪研究. 吉林大学学报(信息科学版). 2023(01): 165-173 . 百度学术
2. 左岑,杨秀杰,张捷,王璇. 基于轻量级金字塔密集残差网络的红外图像超分辨增强. 红外技术. 2021(03): 251-257 . 本站查看
3. 赵蔷,谢鹏. 基于多视角特征协同融合的红外导引头目标追踪算法. 重庆邮电大学学报(自然科学版). 2020(04): 639-647 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 110
- HTML全文浏览量: 20
- PDF下载量: 15
- 被引次数: 4