空间自适应卷积核滤波红外弱小目标检测
Space-adaptive Convolution Kernel Filtering For Infrared Dim Target Detection
-
摘要: 为了减少复杂红外图像中平滑背景边缘的影响,将具有各向异性特性的PM扩散模型应用到红外弱小目标检测,提出了空间自适应卷积核滤波检测算法,并对扩散系数进行了优化.针对模型中扩散参数难以确定的问题,提出了一种利用Sobel边缘检测算子估计扩散参数的方法.滤波后采用信噪比(SNR,Signal Noise Ratio)和接受机工作特性(ROC,Receiver Operating Characteristic)曲线进行性能评价,实验结果表明,与PM扩散模型滤波和中值滤波相比,该算法有效抑制了边缘,大大提高了信噪比,提高了检测概率,降低了虚警概率,具有更好的性能.