基于多尺度字典的红外与微光图像融合
Infrared and Low Light Level Image Fusion Based on Multi-scale Dictionary
-
摘要: 基于人类视觉系统及信号的过完备稀疏表示理论,提出了一种基于多尺度字典的红外与微光图像融合方法。首先把输入的红外与微光图像按照高斯金字塔模型分解,用 DCT 字典作为初始字典按照四叉树的结构进行分解,对于各尺度的字典按照 K-SVD 算法独立训练更新,构造出多尺度学习字典。其次在该字典下利用改进的OMP算法得到输入源图像各自的稀疏系数,然后按照最优化融合图像与输入源图像的欧氏距离、融合图像方差的准则,建立一个融合图像稀疏系数的最优化函数,最后通过求解该函数的l1范数得到融合图像。实验结果表明:该算法的融合效果优于小波变换法、Laplacian塔型方法以及PCA方法等传统融合方法。