非制冷红外探测器陶瓷封装结构优化及可靠性分析

Ceramic Package Structure Optimization and Reliability Analysis for Uncooled Infrared Detectors

  • 摘要: 陶瓷封装是非制冷红外探测器最主流的封装形式,封装的低成本、小型化和高可靠性是发展方向。在某款陶瓷封装探测器结构的基础上,提出一种优化结构,优化后成本降低约5%、体积缩小约30%。基于ANSYS Workbench有限元分析软件,从网格数量无关性验证出发,分析了非制冷红外探测器陶瓷封装原始结构和优化结构各组件在10.2G随机振动环境和500g半正弦波冲击振动环境的最大等效应力和最大形变,结果显示两种结构均满足可靠性要求。在此基础上,本文对优化结构红外窗口的不同材料和不同厚度进行了500g半正弦波冲击振动环境可靠性仿真,结果表明:0.3 mm~1.0 mm厚度锗窗口和硅窗口均满足可靠性要求,最大等效应力和最大形变与窗口厚度呈负相关,相同厚度的红外窗口,硅窗口比锗窗口可靠性表现更好。本文的研究为非制冷红外探测器陶瓷封装形式的后续结构设计和仿真计算提供了参考。

     

    Abstract: Ceramic packaging is the most common packaging form used for uncooled infrared detectors. The low cost, miniaturization, and high reliability of packaging are its key development directions. This paper proposes an optimized design that can reduce the cost and volume by nearly 5% and 30%, respectively, compared to an existing ceramic packaging structure. First, the independence of the grid number is proved. Then, the maximum equivalent stress and maximum deformation of each component of the original and optimized structures of the uncooled infrared detector ceramic packaging were analyzed under two conditions: a 10.2G random vibration and a 500g half-sine wave shock employing ANSYS Workbench. The results show that both structures meet the reliability requirements. In addition, reliability simulation for different materials and different thicknesses of the infrared window of the optimized structure was conducted under a 500g half-sine wave shock condition. The results show that both germanium and silicon windows with thicknesses from 0.3 mm to 1.0 mm meet the reliability requirements, and there is a negative correlation between the thickness of the window and maximum equivalent stress, as well as maximum deformation. For infrared windows with the same thickness, the reliability of the silicon infrared window was better. This study provides a reference for the subsequent structural design and simulation calculation of the ceramic packaging of an uncooled infrared detector.

     

/

返回文章
返回