深度学习在绝缘子红外图像异常诊断的应用

Application of Deep Learning in Abnormal Insulator Infrared Image Diagnosis

  • 摘要: 绝缘子的红外图像分析一般采用图像处理的方法,易受背景环境和数据量的影响,准确率和效率均较低,本文提出一种深度学习的异常诊断方法,基于改进的Faster R-CNN方法搭建检测网络,开展不同类型的绝缘子测试。研究结果表明:相对于神经网络(Back Propagation,BP)、Faster R-CNN方法,本文方法可高效地诊断出绝缘子的异常缺陷,平均检测精度达到90.2%;单Ⅰ型和Ⅴ型绝缘子的异常诊断准确率高于双Ⅰ型绝缘子。研究结果可为输电线路绝缘子异常诊断提供一定的参考。

     

    Abstract: Because of the effects of the background environment and data volume, the accuracy and efficiency of abnormal defects in traditional infrared images of insulators are generally low. In this study, a deep-learning anomaly diagnosis method is proposed. Based on the improved faster region-based convolutional neural network (R-CNN) method, a detection network is built to test different types of insulators. Results show that compared with the back propagation neural network and faster R-CNN methods, the proposed method can diagnose abnormal defects of insulators efficiently with a mean average precision of 90.2%. In addition, the diagnostic accuracy of single type Ⅰ and type Ⅴ insulators is higher than that of double type Ⅰ insulators. The results can provide a reference for insulator defect identification in transmission lines.

     

/

返回文章
返回