留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紫外增强图像传感器的研究进展

罗磊 唐利斌 左文彬

罗磊, 唐利斌, 左文彬. 紫外增强图像传感器的研究进展[J]. 红外技术, 2021, 43(11): 1023-1033.
引用本文: 罗磊, 唐利斌, 左文彬. 紫外增强图像传感器的研究进展[J]. 红外技术, 2021, 43(11): 1023-1033.
LUO Lei, TANG Libin, ZUO Wenbin. Research Progress in Ultraviolet Enhanced Image Sensors[J]. Infrared Technology , 2021, 43(11): 1023-1033.
Citation: LUO Lei, TANG Libin, ZUO Wenbin. Research Progress in Ultraviolet Enhanced Image Sensors[J]. Infrared Technology , 2021, 43(11): 1023-1033.

紫外增强图像传感器的研究进展

基金项目: 

国家重点研发计划 2019YFB2203404

云南省创新团队项目 2018HC020

详细信息
    作者简介:

    罗磊(1997-),男,硕士研究生,研究方向是紫外增强CMOS图像传感器

    通讯作者:

    唐利斌(1978-),男,研究员级高级工程师,博士生导师,主要从事光电材料与器件的研究。E-mail: sscitang@163.com

  • 中图分类号: TN204

Research Progress in Ultraviolet Enhanced Image Sensors

  • 摘要: 近年来图像传感器在紫外成像的应用越来越广泛,尤其是以CCD(charge coupled device)和CMOS(complementary metal oxide semiconductor)为主的紫外图像传感器受到了研究人员的广泛关注。半导体技术的进步和纳米材料的发展进一步推动了紫外图像传感器的研究。本文综述了国内外紫外增强图像传感器的研究进展,介绍了几种增强器件紫外响应的材料,另外还简要概述了紫外图像传感器在生化分析、大气监测、天文探测等方面的应用,并讨论了CCD/CMOS图像传感器在紫外探测方面所面临的挑战。
  • 图  1  图像传感器工作原理和结构示意图:(a),(b),(c)和(d)分别为CCD、CMOS、前照式图像传感器结构和背照式图像传感器结构[12];(e) 堆栈式CMOS图像传感器;(f) 具有Cu-Cu杂化键合的新型堆栈式背照CMOS图像传感器及器件截面图[13]

    Figure  1.  Schematic diagrams of imaging sensor working principles and structures: (a), (b), (c) and (d) are CCD, CMOS, structure of front-illuminated image sensor cross-section, and structure of back-illuminated image sensor cross-section, respectively[12]; (e) Stacked CMOS image sensor; (f) New stacked BI-CIS with Cu-Cu hybrid bonding and cross-sectional view of the device[13]

    图  2  有机、无机稀土掺杂化合物增强紫外图像传感器:(a) Lumogen结构;(b) Lumogen薄膜紫外-可见吸收光谱[37];(c) 镀膜前(i)和镀膜后(ii)的CCD汞灯谱线[40];(d) 不同方法制备的晕苯薄膜的反射和透射光谱图[42];(e) 不同膜层厚度下的CMOS图像传感器在紫外波段范围内的量子效率[44];(f) LiSr(1-3x/2)VO4: xTb3+的荧光激发和发射光谱[45]

    Figure  2.  Ultraviolet image sensor enhanced by organic and inorganic rare earth doped compounds: (a) Structure of Lumogen; (b) UV-vis absorption spectrum of Lumogen film[37]; (c) CCD mercury lamp spectra before (i)and after(ii) coating[40]; (d) Reflectance and transmittance spectra of Coronene film prepared by different methods[42]; (e)Quantum efficiency of CMOS image sensors in the ultraviolet band rang with different film thickness[44]; (f) Photoluminescence excitation and emission spectra of LiSr(1-3x/2)VO4: xTb3+[45]

    图  3  量子点增强紫外CMOS器件:(a) 纳米复合薄膜在紫外光和可见光照射下的示意图[57];(b) CdSe/ZnS量子点和硅基量子点纳米复合物的吸收和荧光光谱图[58];(c) 在可见光(i)和紫外光(ii)照射下的量子点涂层CID86器件[59];(d) CdSe/ZnS量子点示意图;(e) 不同膜层的CdSe/ZnS量子点薄膜的荧光发射光谱[61];(f) 量子点涂覆器件的结构图[60]

    Figure  3.  Quantum dot enhanced UV CMOS devices: (a) A schematic representation of the nanocomposites film illuminated by UV and visible light[57]; (b) Absorption and PL spectra of CdSe/ZnS QDs and QD/silica nanocomposites[58]; (c) Photoes of CID86 devicecoated by QD under visible (i) and UV (ii) light illumination[59]; (d) Diagram of CdSe/ZnS quantum dot; (e) PL emission spectra of CdSe/ZnS QD films with different layers[61]; (f) Schematic of a QD coated device[60]

    图  4  钙钛矿量子点增强紫外CCD器件:(a) 钙钛矿结构示意图;(b) CsPbX3胶体量子点溶液的荧光成像图和相应的荧光光谱[62];(c) MAPbBr3量子点的紫外-可见吸收光谱和透射电镜图像[66];(d) PQDCF紫外增强硅光电二极管结构示意图;(e) PQDCF旋涂前后的EMCCD成像传感器的外量子效率;(f) PQDCF的荧光光谱及在室内日光(上)和365 nm紫外灯下(下)的照片[68]

    Figure  4.  Perovskite quantum dots enhanced ultraviolet CCD devices: (a) Structure diagram of perovskite; (b) Photoes of CsPbX3 colloidal QDs solutions and corresponding PL spectra[61]; (c) UV-Vis absorption spectra and TEM image of MAPbBr3 QDs[65]; (d) Structure diagram of the PQDCF UV enhanced EMCCD; (e) The EQE of EMCCD image sensor before and after coating PQDCF, (f) PL spectrum of PQDCF with the corresponding photographs under ambient daylight (up) and under a 365 nm UV lamp (down) shown in inset[67]

    图  5  图像传感器在紫外成像方面的应用:(a) 盐酸二甲双胍可见透射和紫外吸收图像[4];(b) 片剂的可见光和紫外图像[69];(c)电站烟囱校准后的SO2图像[70];(d) 高分辨率极紫外相机模型[72];(e) 哈勃望远镜第三代相机的CCD探测器封装图[71];(f) SUIT所有子系统的有效载荷[73]

    Figure  5.  Applications of image sensor in ultraviolet imaging: (a) UV and visible absorbance maps obtained for Glucophage SR[4]; (b) Visible and ultraviolet images of tablets[69]; (c) The resulting calibrated SO2 image of Drax power station stack[70]; (d) HRIEUV camera flight model[72]; (e) Peckaging image of CCD detector of Hubble telescope third generation camera[71]; (f) SUIT (Solar Ultraviolet Imaging Telescope) payload with all the subsystems[73]

    表  1  CMOS与CCD图像传感器参数对比

    Table  1.   Comparison of CMOS and CCD image sensor parameters

    Parameter CMOS CCD
    Signal to noise ratio Low High
    Sensitivity High Higher
    Size Small Large
    Power consumption High to mode rate High
    System complexity Low High
    Cost Low High
    Signal from pixel Voltage Electron packet
    Signal from chip Bits(digital) Analog voltage
    下载: 导出CSV

    表  2  紫外增强CMOS/CCD图像传感器

    Table  2.   UV-enhanced CMOS/CCD image sensor

    Year Sensor QE Wavelength range Number of pixels Ref.
    1987 CCD 22%@250 nm 10-300 nm - [14]
    1997 CCD 50% 200-400 nm - [15]
    2007 CMOS 15%@300 nm 300 nm 4k×3k [16-17]
    2008 CCD 45%@400 nm 250-900 nm 1k×1k [18]
    2009 CMOS 52%@400 nm 400-1000 nm - [19]
    2012 CCD 50% 180-200 nm 1024×512 [20]
    2012 CMOS 50% 5-20 nm 1k×1k [21]
    2013 CMOS - 200-1000 nm - [22]
    2014 CMOS - - 3k×3k [23]
    2015 CMOS 190-1000 nm 1k×1k [24]
    2016 EMCCD 80%@205 nm 170-320 nm 1k×2k [25]
    2016 CMOS - 200-1100 nm - [26]
    2019 CMOS 46%@300 nm 190-1000 nm - [27]
    2019 CMOS - 200-1000 nm 640×480 [28]
    下载: 导出CSV
  • [1] 周峰, 郑国宪, 闫锋, 等. 天基紫外预警技术发展现状及思考[J]. 航天返回与遥感, 2012(6): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201206008.htm

    ZHOU Feng, ZHENG Guoxian, YAN Feng, et al. Development status and thoughts of space-based UV warning technology[J]. Spacecraft Recovery & Remote Sensing, 2012(6): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201206008.htm
    [2] 周影, 娄洪伟, 周跃, 等. 微弱日盲紫外电晕自动实时检测方法[J]. 中国光学, 2015(6): 926-932. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201506007.htm

    ZHOU Ying, LOU Hongwei, ZHOU Yue, et al. Automatic real-time detection method of faint solar-blind ultraviolet coronene[J]. Chinese Optics, 2015(6): 926-932. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201506007.htm
    [3] 毛小洁. 高功率皮秒紫外激光器新进展[J]. 中国光学, 2015(2): 182-190. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201502002.htm

    MAO Xiaojie. Recent advances in high power picosecond ultraviolet lasers[J]. Chinese Optics, 2015(2): 182-190. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201502002.htm
    [4] Ostergaard J. UV imaging in pharmaceutical analysis[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147: 140-148. doi:  10.1016/j.jpba.2017.07.055
    [5] Novikova A, Carstensen J M, Zeitler J A, et al. Multispectral UV imaging for determination of the tablet coating thickness[J]. Journal of Pharmaceutical Sciences, 2017, 106(6): 1560-1569. doi:  10.1016/j.xphs.2017.02.016
    [6] Okino T, Yamahira S, Yamada S, et al. A real-time ultraviolet radiation imaging system using an organic photoconductive image sensor[J]. Sensors (Basel), 2018, 18(1): 314. doi:  10.3390/s18010314
    [7] Leitherer C, Vacca W D, Conti P S, et al. Hubble space telescope ultraviolet imaging and spectroscopy of the right starburst in the Wolf-Rayet Galaxy NGC 4214[J]. The Astrophysical Journal, 1996, 465(2): 717. http://www.researchgate.net/profile/William_Vacca/publication/234427077_Hubble_Space_Telescope_Ultraviolet_Imaging_and_Spectroscopy_of_the_Bright_Starburst_in_the_Wolf-Rayet_Galaxy_NGC_4214/links/02bfe510827ba5fe24000000.pdf
    [8] Mende S B, Heetderks H, Frey H U, et al. Far ultraviolet imaging from the IMAGE spacecraft. 1. System design[J]. Space Science Reviews, 2000, 91(1-2): 243-270. http://www.researchgate.net/profile/H_Frey/publication/226049375_Far_Ultraviolet_imaging_from_the_IMAGE_spacecraft._1._System_design/links/0912f50bbc40a4e6d4000000.pdf
    [9] 张宣妮, 赵宝升. 一种新型真空型紫外成像探测器[J]. 应用光学, 2007(2): 159-164. doi:  10.3969/j.issn.1002-2082.2007.02.010

    ZHANG Xuanni, ZHAO Baosheng. New vacuum UV imaging detector[J]. Journal of Applied Optics, 2007(2): 159-164. doi:  10.3969/j.issn.1002-2082.2007.02.010
    [10] Park J, Seung H, Kim D C, et al. Unconventional image-sensing and light-emitting devices for extended reality[J]. Advanced Functional Materials, 2021, 31(39): 2009281. doi:  10.1002/adfm.202009281
    [11] Heavens O S. Handbook of Optical Constants of Solids Ⅱ[J]. Journal of Modern Optics, 2011, 39(1): 189-189.
    [12] 朱晓秀, 葛咏, 李建军, 等. 量子点增强硅基探测成像器件的研究进展[J]. 中国光学, 2020(1): 62-74. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA202001005.htm

    ZHU Xiaoxiu, GE Yong, LI Jianjun, et al. Research progress of quantum dot enhanced silicon-based photodetectors[J]. Chinese Optics, 2020(1): 62-74. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA202001005.htm
    [13] Kagawa Y, Fujii N, Aoyagi K, et al. An advanced Cu-Cu hybrid bonding for novel stacked CMOS image sensor[C]//IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), 2018: 65-67.
    [14] Stern R A, Catura R C, Kimble R, et al. Ultraviolet and extreme ultraviolet response of charge-coupled-device detectors[J]. Optical Engineering, 1987, 26(9): 875-883. http://www.onacademic.com/detail/journal_1000037713050810_641b.html
    [15] Muramatsu M, Akahori H, Shibayama K, et al. Greater than 90% QE in visible spectrum perceptible from UV to near IR Hamamatsu thinned back illuminated CCD's[C]//Solid State Sensor Arrays-Development and Applications, 1997, 3019: 2-8.
    [16] Waltham N R, Prydderch M, Mapson-Menard H, et al. Development of a thinned back-illuminated CMOS active pixel sensor for extreme ultraviolet spectroscopy and imaging in space science[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 573(1-2): 250-252. http://www.onacademic.com/detail/journal_1000034100897710_0614.html
    [17] Prydderch M, Waltham N, Morrissey Q, et al. A large area CMOS monolithic active pixel sensor for extreme ultraviolet spectroscopy and imaging[C]//Conference on Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications V, 2004, 5301: 175-185.
    [18] Blacksberg J, Nikzad S, Hoenk M E, et al. Near-100% quantum efficiency of Delta doped large-format UV-NIR silicon imagers[J]. IEEE Transactions on Electron Devices, 2008, 55(12): 3402-3406. doi:  10.1109/TED.2008.2006779
    [19] Hoenk M E, Dereniak E L, Hartke J P, et al. Delta-doped back-illuminated CMOS imaging arrays: progress and prospects[C]//Infrared Systems and Photoelectronic Technology IV, 2009, 7419: 74190T.
    [20] Nikzad S, Hoenk M E, Greer F, et al. Delta-doped electron-multiplied CCD with absolute quantum efficiency over 50% in the near to far ultraviolet range for single photon counting applications[J]. Applied Optics, 2012, 51(3): 365-369. doi:  10.1364/AO.51.000365
    [21] Benmoussa A, Stockman Y, Renotte E, et al. EUV high resolution imager on-board solar orbiter: optical design and detector performances[C]//International Conference on Space Optics-ICSO, 2012, DOI: 10.1117/12.2309019.
    [22] Kuroda R, Kawada S, Nasuno S, et al. A FSI CMOS image sensor with 200-1000 nm spectral response and high robustness to ultraviolet light exposure[J]. Ite Technical Report, 2013, 37: 21-24. http://www.imagesensors.org/Past%20Workshops/2013%20Workshop/2013%20Papers/03-6_102-Kuroda_paper.pdf
    [23] Halain J P, Debaize A, Gillis J M, et al. The dual-gain 10 μm back-thinned 3k x 3k CMOS-APS detector of the solar orbiter extreme UV imager[C]//Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray, 2014: 9144.
    [24] Nasuno S, Wakashima S, Kusuhara F, et al. A CMOS image sensor with 240 µV/e–conversion gain, 200 ke–Full well capacity, 190-1000 nm spectral response and high robustness to UV light[J]. ITE Transactions on Media Technology and Applications, 2016, 4(2): 116-122. doi:  10.3169/mta.4.116
    [25] Nikzad S, Hoenk M, Jewell A D, et al. Single photon counting UV solar-blind detectors using silicon and Ⅲ-Nitride materials[J]. Sensors, 2016, 16(6): 927. doi:  10.3390/s16060927
    [26] Gabler D, Henkel C, Thiele S. CMOS integrated UV-photodiodes[C]//Proceedings of the 30th Anniversary Eurosensors Conference - Eurosensors, 2016, 168: 1208-1213.
    [27] Aoyagi Y, Fujihara Y, Murata M, et al. A CMOS image sensor with dual pixel reset voltage for high accuracy ultraviolet light absorption spectral imaging[J]. Japanese Journal of Applied Physics, 2019, 58: 25-28. doi:  10.7567/1347-4065/aaffc1/pdf
    [28] Sipauba Carvalho Da Silva Y R, Kuroda R, Sugawa S. An optical filter-less CMOS image sensor with differential spectral response pixels for simultaneous UV-selective and visible imaging[J]. Sensors (Basel), 2019, 20(1): 13. doi:  10.3390/s20010013
    [29] 李善君. 高分子光化学原理及应用[M]. 上海: 复旦大学出版社, 2003.

    LI Shanjun. Principle and Application of Polymer Photochemistry[M]. Shanghai: Fudan University Press, 2003.
    [30] 岑助甫. CCD紫外增强技术的研究及性能检测[D]. 杭州: 中国计量大学, 2018.

    CEN Zhufu. Research on CCD Ultraviolet Enhancement Technology and Performance Test[D]. Hangzhou: China Jiliang University, 2018.
    [31] Cowens M W, Blouke M M, Fairchild T, et al. Coronene and liumogen as VUV sensitive coatings for Si CCD imagers: a comparison[J]. Applied Optics, 1980, 19(22): 3727-3728. doi:  10.1364/AO.19.003727
    [32] Morrissey P F, Mccandliss S R, Feldman P D, et al. Ultraviolet performance of a lumigen-coated CCD[J]. Bulletin of the American Astronomical Aociety, 1991, 23: 1316.
    [33] Blouke M M, Cowens M W, Hall J E, et al. A UV sensitive CCD detector[C]//Electron Devices Meeting, 1979, DOI: 10.1109/IEDM.1979.189562.
    [34] Blouke M M, Cowens M W, Hall J E, et al. Ultraviolet downconverting phosphor for use with silicon CCD imagers[J]. Applied Optics, 1980, 19(19): 3318-3321. doi:  10.1364/AO.19.003318
    [35] Viehmann W, Butner C L, Cowens M W. Ultraviolet (UV) sensitive phosphors for silicon imaging detectors[J]. Proceedings of the Society of Photo-Optical Instrumentation Engineers, 1981, 279: 146-152. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1231315
    [36] Damento M A, Barcellos A A, Schempp W V. Stability of lumogen films on CCDs[C]//Charge-Coupled Devices and Solid State Optical Sensors V, 1995, 2415: 204-210.
    [37] Deslandes A, Wedding A B, Clarke S R, et al. Characterization of PVD lumogen films for wavelength conversion applications[C]//Smart Structures, Devices, and Systems Ⅱ, 2005, 5649: 616-626.
    [38] 顾页妮, 钱晓晨, 吕燕磊, 等. 真空紫外辐照对Lumogen薄膜损伤及光学性能的影响[J]. 光学仪器, 2021(1): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYQ202101013.htm

    GU Yeni, QIAN Xiaochen, LV Yanlei, et al. Effect of vacuum UV radiation on Lumogen film damage and optical properties[J]. Optical Instruments, 2021(1): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYQ202101013.htm
    [39] 姜霖, 张大伟, 陶春先, 等. 紫外增强Lumogen薄膜旋涂法制备及其性能表征[J]. 光谱学与光谱分析, 2013, 33(2): 468-470. doi:  10.3964/j.issn.1000-0593(2013)02-0468-03

    JIANG Lin, ZHANG Dawei, TAO Chunxian, et al. Preparation by spin-coating and characterization of UV enhanced lumogen films[J]. Spectroscopy and Spectral Analysis, 2013, 33(2): 468-470. doi:  10.3964/j.issn.1000-0593(2013)02-0468-03
    [40] 杜晨光, 孙利群, 丁志田. 利用晕苯增强CCD紫外响应的实验研究[J]. 光学技术, 2010, 36(5): 753-757. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201005026.htm

    DU Chenguang, SUN Liqun, DING Zhitian. Experiment study on enhancing CCD ultraviolet response of CCD use coronene[J]. Optical Technique, 2010, 36(5): 753-757. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201005026.htm
    [41] 张大伟, 田鑫, 黄元申, 等. CCD紫外敏感Lumogen薄膜制备与光谱表征[J]. 光谱学与光谱分析, 2010, 30(5): 1171-1174. doi:  10.3964/j.issn.1000-0593(2010)05-1171-04

    ZHANG Dawei, TIAN Xin, HUANG Yuanshen. Preparation and spectral characterization of UV-sensitive lumogen film with CCD[J]. Spectroscopy and Spectral Analysis, 2010, 30(5): 1171-1174. doi:  10.3964/j.issn.1000-0593(2010)05-1171-04
    [42] 何梁, 张大伟, 陶春先, 等. 旋涂法和热蒸发制备紫外CCD用晕苯薄膜的性能对比[J]. 光谱学与光谱分析, 2014(5): 1319-1322. doi:  10.3964/j.issn.1000-0593(2014)05-1319-04

    HE Liang, ZHANG Dawei, TAO Chunxian, et al. Performance comparison of coronene film for UV CCD prepared by spin coating and physical vapor deposition[J]. Spectroscopy and Spectral Analysis, 2014(5): 1319-1322. doi:  10.3964/j.issn.1000-0593(2014)05-1319-04
    [43] 冯宇祥, 孟银霞, 张国玉, 等. CCD紫外增强薄膜旋涂法工艺优化[J]. 光谱学与光谱分析, 2017(9): 2826-2831. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201709034.htm

    FENG Yuxiang, MENG Yinxia, ZHANG Guoyu, et al. Optimization of CCD UV enhanced film spinning coating process[J]. Spectroscopy and Spectral Analysis, 2017(9): 2826-2831. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201709034.htm
    [44] 刘琼, 马守宝, 钱晓晨, 等. CMOS传感器紫外敏化膜层的厚度优化及其光电性能测试[J]. 光子学报, 2017(6): 231-236. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201706032.htm

    LIU Qiong, MA Shouyu, QIAN Xiaochen, et al. Thickness optimization of UV sensitized film of CMOS sensor and its photoelectric performance test[J]. Acta Photonica Sinica, 2017(6): 231-236. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201706032.htm
    [45] Biswas P, Kumar V, Kamni. The structural and spectral study of LiSrVO4: Tb3+ phosphor for UV-shifted imaging devices[C]//2nd International Conference on Recent Advances in Materials and Manufacturing Technologies (IMMT), 2020, 28: 1018-1023.
    [46] Franks W A R, Kiik M J, Nathan A. UV-responsive CCD image sensors with enhanced inorganic phosphor coatings[J]. IEEE Transactions on Electron Devices, 2003, 50(2): 352-358. doi:  10.1109/TED.2003.809029
    [47] 刘猛, 张大伟, 谢品, 等. 增强光电图像传感器紫外探测薄膜的制备[J]. 仪表技术与传感器, 2009(9): 12-14. doi:  10.3969/j.issn.1002-1841.2009.09.005

    LIU Meng, ZHANG Dawei, XIE Pin, et al. Investigation in UV-enhanced coatings based on Zn2SiO4: Mn for image sensors[J]. Instrument Technique and Sensor, 2009(9): 12-14. doi:  10.3969/j.issn.1002-1841.2009.09.005
    [48] SHENG X, YU C J, Malyarchuk V, et al. Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores[J]. Advanced Optical Materials, 2014, 2(4): 314-319. doi:  10.1002/adom.201300475
    [49] TAI Y P, LI X Z, PAN B L. Efficient near-infrared down conversion in Nd3+-Yb3+ co-doped transparent nanostructured glass ceramics for photovoltaic application[J]. Journal of Luminescence, 2018, 195: 102-108. doi:  10.1016/j.jlumin.2017.10.051
    [50] SONG Y H, YOU H P, HUANG Y J, et al. Highly uniform and monodisperse Gd2O2S: Ln3+ (Ln = Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties[J]. Inorganic Chemistry, 2010, 49(24): 11499-11504. doi:  10.1021/ic101608b
    [51] Strümpel C, Mccann M, Beaucarne G, et al. Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials[J]. Solar Energy Materials and Solar Cells, 2007, 91(4): 238-249. doi:  10.1016/j.solmat.2006.09.003
    [52] Kagan C R, Lifshitz E, Sargent E H, et al. Building devices from colloidal quantum dots[J]. Science, 2016, 353(6302): aac5523-aac5523. doi:  10.1126/science.aac5523
    [53] DE Arquer F P G, Armin A, Meredith P, et al. Solution-processed semiconductors for next-generation photodetectors[J]. Nature Reviews Materials, 2017, 2(3): 16100. doi:  10.1038/natrevmats.2016.100
    [54] HAN H V, LU A Y, LU L S, et al. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment[J]. ACS Nano, 2016, 10(1): 1454-1461. doi:  10.1021/acsnano.5b06960
    [55] Geyer S M, Scherer J M, Moloto N, et al. Efficient luminescent down-shifting detectors based on colloidal quantum dots for dual-band detection applications[J]. ACS Nano, 2011, 5(7): 5566-5571. doi:  10.1021/nn2010238
    [56] JIANG L, SUN H J, XU B L, et al. The spectrum of quantum dots film for UV CCD[J]. Journal of Spectroscopy, 2013, 2013: 1-5. http://downloads.hindawi.com/journals/jspec/2013/803907.pdf
    [57] YUAN Y, HAN Y, HUANG B, et al. Single-channel UV/VIS dual-band detection with ZnCdS: Mn/ZnS core/shell quantum dots[J]. Nanotechnology, 2019, 30(7): 075501. doi:  10.1088/1361-6528/aaf3e0
    [58] Sadeghimakki B, Jahed N M S, Sivoththaman S. Spectrally resolved dynamics of synthesized CdSe/ZnS quantum dot/silica nanocrystals for photonic down-shifting applications[J]. IEEE Transactions on Nanotechnology, 2014, 13(4): 825-834. doi:  10.1109/TNANO.2014.2324973
    [59] Robinson R, Ninkov Z, Cormier D, et al. First report on quantum dot coated CMOS CID arrays for the UV and VUV[C]//UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XVⅢ, 2013: 8859.
    [60] Knowles A, Williams S, Ninkov Z, et al. Incorporating quantum dots in a Magnesium Fluoride matrix to enable deep-UV sensitivity for standard silicon based imaging detectors[C]//Proceedings of SPIE, 2019: 10982.
    [61] Ichiyama R, Ninkov Z, Williams S, et al. Using quantum-dots to enable deep-UV sensitivity with standard silicon-based imaging detectors[C]//Conference on Photonic Instrumentation Engineering IV, 2017: 10110.
    [62] Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696. doi:  10.1021/nl5048779
    [63] ZHANG F, ZHONG H, CHEN C, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X=Br, I, Cl) quantum dots: potential alternatives for display technology[J]. ACS Nano, 2015, 9(4): 4533-4542. doi:  10.1021/acsnano.5b01154
    [64] DAI S W, HSU B W, CHEN C Y, et al. Perovskite quantum dots with near unity solution and neat-film photoluminescent quantum yield by novel spray synthesis[J]. Advanced Materials, 2018, 30(7): 1870048. doi:  10.1002/adma.201870048
    [65] ZHU Q S, ZHENG K B, Abdellah M, et al. Correlating structure and electronic band-edge properties in organolead halide perovskites nanoparticles[J]. Physical Chemistry Chemical Physics, 2016, 18(22): 14933-14940. doi:  10.1039/C6CP01843B
    [66] YANG H S, Noh S H, Suh E H, et al. Enhanced stabilities and production yields of MAPbBr3 quantum dots and their applications as stretchable and self-healable color filters[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 4374-4384. http://www.ncbi.nlm.nih.gov/pubmed/33448782
    [67] ZHOU Q C, BAI Z L, LU W G, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Advanced Materials, 2016, 28(41): 9163-9168. doi:  10.1002/adma.201602651
    [68] ZHANG M J, WANG L X, MENG L H, et al. Perovskite quantum dotsembedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection[J]. Advanced Optical Materials, 2018, 6(16): 1800077. doi:  10.1002/adom.201800077
    [69] Klukkert M, Wu J X, Rantanen J, et al. Rapid assessment of tablet film coating quality by multispectral UV imaging[J]. AAPS Pharm Sci Tech, 2016, 17(4): 958-967. doi:  10.1208/s12249-015-0414-x
    [70] Wilkes T C, Mcgonigle A J, Pering T D, et al. Ultraviolet imaging with low cost smartphone sensors: Development and application of a raspberry Pi-based UV camera[J]. Sensors (Basel), 2016, 16(10): 1649. doi:  10.3390/s16101649
    [71] Dresse L. Wide Field Camera 3 Instrument Handbook, v 8.0[M]. Baltimore: STScI, 2016.
    [72] Halain J P, Debaize A, Gillis J M, et al. The dual-gain 10 µm back-thinned 3k×3k CMOS-APS detector of the solar orbiter extreme UV imager[C]//Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray, 2014: 9144.
    [73] Tripathi D, Ramaprakash A N, Khan A, et al. The solar ultraviolet imaging telescope on-board Aditya-L1[J]. Current Science, 2017, 113(4): 616-619. doi:  10.18520/cs/v113/i04/616-619
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  351
  • HTML全文浏览量:  204
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 修回日期:  2021-11-13
  • 刊出日期:  2021-11-20

目录

    /

    返回文章
    返回