空间相机大功率热源散热设计

Heat-Dissipation Design for Space Camera High-Power Heat Source

  • 摘要: 为解决复杂外热流下散热面难以确定的难题,基于散热面总到达外热流最小的设计原则,对空间相机大功率热源散热设计进行研究。首先,根据相机所处空间环境分析相机受到的外热流。接着,通过分析外热流与热源工作模式,采用在相机两侧设置辐射冷板散热并通过热管耦合的方式,增大了热源的散热效率,减小了辐射冷板的面积。最后,根据相机所处空间环境和采取的热控措施利用热仿真软件进行了热分析验证。仿真结果表明:可见光组件温度为-1.9℃~12.9℃,红外组件温度为1.7℃~10.5℃,制冷机热端温度为-12℃~0.3℃,制冷机压缩机温度为-11.3℃~21.3℃。满足温控指标要求,解决了复杂外热流下相机大功率热源的散热问题。

     

    Abstract: To solve the difficulty of selecting an appropriate heat sink for complex heat flows, the design of high-power heat sources for space cameras was investigated based on the design principle of reducing the total heat flow to a heat sink. First, the heat flow to a camera was analyzed according to a space environment. Subsequently, by analyzing the heat flow and working mode of the heat source, the efficiency of heat dissipation from the heat source and the area of the radiant cooling plates were reduced by installing radiant cooling plates on both sides of the camera and coupling them through heat pipes. Finally, the thermal analysis was verified using a thermal simulation software based on the camera's space environment and the thermal control measures taken. The simulation results showed that the temperature of the visible focal plane component was -1.9℃ to 12.9℃, the temperature of the infrared camera circuit board was -1.7℃ to 6.7℃, the temperature of the hot end of the chiller was -12℃ to 0.3℃, and the temperature of the chiller compressor was -11.3℃ to 21.3℃. The temperature index requirements were satisfied, and the problem of heat dissipation from the high-power heat source of the camera under complex heat flow was solved.

     

/

返回文章
返回