基于RT-DETR光伏电池红外图像表面缺陷检测算法

RT-DETR-Based Algorithm for Surface Defect Detection in Photovoltaic Cells Using Infrared Images

  • 摘要: 光伏电池表面缺陷检测是确保太阳能发电系统安全高效运行的关键。本文提出了一种改进的RT-DETR模型——CAD-RTDETR,用于高效检测光伏电池表面的缺陷。首先,引入了无参数注意力机制网络中的重参数模块ConvCX3,提升了模型检测精度;其次,引入改进的目标检测模型ASF-YOLO,优化了多尺度信息提取能力;接着,引入了一种DySample动态上采样器,提升了抗干扰能力,优化了模型检测能力;最后,引入Inner-ShapeIoU损失函数,改善对不同尺度和复杂形状小目标的检测效果。实验结果表明,CAD-RTDETR在检测精度、速度和鲁棒性方面均优于基准RT-DETR-r18,尤其在小目标缺陷检测中,准确率提升3.70%,召回率提升5.10%,平均精度均值提高7.00%。通过引入PVEL-AD数据集进行对比试验,证明CAD-RTDETR具有较强的泛化能力,优于常用算法。这些改进为光伏电池表面缺陷检测提供了高效、准确的解决方案,具有一定的实际应用价值。

     

    Abstract: Surface defect detection in photovoltaic (PV) cells is crucial for ensuring the safe and efficient operation of solar power systems. This paper proposes an enhanced RT-DETR model, named CAD-RTDETR, for efficient defect detection on PV cell surfaces. First, the re-parameterized module ConvCX3, derived from a parameter-free attention mechanism network, is introduced to improve detection accuracy. Second, the improved ASF-YOLO object detection model is integrated to optimize multi-scale feature extraction. Third, the DySample dynamic upsampler is incorporated to enhance anti-interference capabilities and refine detection performance. Finally, the Inner-ShapeIoU loss function is adopted to improve detection accuracy for small targets with complex shapes and varying scales. Experimental results demonstrate that CAD-RTDETR outperforms the baseline RT-DETR-r18 in detection precision, speed and robustness. Specifically, it achieves a 3.70% increase in accuracy, a 5.10% improvement in recall rate, and a 7.00% boost in mean average precision (mAP) for small defect detection. Comparative trials on the PVEL-AD dataset confirm the model’s superior generalization capability over conventional algorithms. These advancements provide an efficient and accurate solution for PV cell surface defect detection, offering significant practical value for industrial applications.

     

/

返回文章
返回