Theoretical Calculation and Test Analysis of Noise Equivalent Temperature Difference of Photovoltaic Infrared FPA Detectors
-
摘要:
噪声等效温差(NETD)是表征红外焦平面探测器灵敏度的重要参数,除了器件本身的因素以外,与实际应用条件及测试条件密切相关。从红外焦平面探测器NETD的测试方法和流程出发,对光伏型红外焦平面探测器NETD的理论计算公式进行了推导,分析了影响器件NETD的主要因素,对典型红外焦平面探测器在不同积分时间、不同电荷存储量、不同F数及半阱输出条件下的背景限NETD进行了理论计算及分析。在固定背景温度下,通过理论公式可从某一温差的NETD推算出不同温差的NETD,选择典型器件进行验证,从常规NETD测试结果推算出的一组NETD与相应温差下的实测结果符合较好,其中1 K温差的NETD推算结果已非常接近实际情况,可为热像仪系统应用提供参考。
Abstract:The noise equivalent temperature difference (NETD) is an important parameter to characterize the sensitivity of infrared FPA detectors. In addition to the detectors, they are closely related to the application and test conditions. Starting from the NETD test method and test process, the NETD theoretical calculation formula for the photovoltaic infrared FPA detector was deduced, and the main factors affecting the NETD of the detectors were analyzed. The background-limit NETD of a typical infrared FPA detector under different integration times, storable charges, F numbers, and half-well fill output conditions was calculated and theoretically analyzed. Under a fixed background temperature, NETD with different temperature differences can be theoretically calculated from a certain temperature difference NETD. By selecting a typical detector for verification, a group of NETDs calculated from the normal NETD test results were found to be in good agreement with the test results under the corresponding temperature difference. The NETD calculation result for the 1 K temperature difference is significantly close to the actual situation, which can provide a reference for the application of thermal imager systems.
-
-
表 1 640×512中波探测器NETD实测结果与推算结果比较
Table 1 Comparison between test results and calculation results of 640×512 MW detector
T0
/mKT1
/mKTested NETD
(T0−T1)/mKCalculation
NETD/mK293 308 21.3 / 293 303 23.1 23.0 293 298 24.7 24.8 293 295 25.8 26.0 293 294 26.3 26.4 293 293.5 26.4 26.6 293 293.2 / 26.7 293 293.1 / 26.7 293 293.01 / 26.8 293 293.001 / 26.8 293 293.0001 / 26.8 -
[1] 王小兵, 贾国伟, 洪普. 利用NETD评估红外系统探测距离的方法研究[J]. 光学与光电技术, 2020(2): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGD202002006.htm WANG Xiaobing, JIA Guowei, HONG Pu. Research on the method of using NETD to evaluate the detection range of infrared system[J]. Optics & Optoelectronic Technology, 2020(2): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGD202002006.htm
[2] 王晓剑, 刘扬, 陈蕾, 等. 基于NETD和ΔT红外点源目标作用距离方程的讨论[J]. 红外与激光工程, 2008(S2): 493-496. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZYHG200807001036.htm WANG Xiaojian, LIU Yang, CHEN Lei, et al. Discussion on the operation range of the infrared imaging system for point target expressed by NETD and ΔT[J]. Infrared and Laser Engineering, 2008(S2): 493-496. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZYHG200807001036.htm
[3] 白渭雄, 付全喜, 焦光龙. 对NETD表达的红外热像仪探测距离的讨论[J]. 激光与红外, 2007(12): 1270-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200712010.htm BAI Weixiong, FU Quanxi, JIAO Guanglong. Discussion on the detection range of the thermal infrared image expressed by NETD[J]. Laser & Infrared, 2007(12): 1270-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200712010.htm
[4] 曾戈虹. 红外系统噪声等效温差机理分析与实例计算[J]. 红外技术, 2012, 34(2): 63-67. DOI: 10.3969/j.issn.1001-8891.2012.02.001 ZENG Gehong. Principles of infrared systems' NETD and theoretical calculations[J]. Infrared Technology, 2012, 34(2): 63-67. DOI: 10.3969/j.issn.1001-8891.2012.02.001
[5] Johan W Viljoen, Tristan M Goss, Cornelius J Willers. MWIR FPA control for optimal NETD[C]//Proc. of SPIE, 2019, 11043: 11043A-1-14.
[6] TANG Jinying, LEI Wuhu, REN Xiaodong, et al. Calculation and analysis of working performance about spaceborne HgCdTe infrared detector affected by temperature[C]//Proc. of SPIE, 2018, 10846: 1084610-1-9.
[7] 褚君浩. 窄禁带半导体物理学[M]. 北京: 科学出版社, 2005. CHU Junhao. Physics of Narrow Bandgap Semiconductor[M]. Beijing: Science Press, 2005.
[8] 吴宗凡, 柳美琳, 张绍举, 等. 红外与微光技术[M]. 北京: 国防工业出版社, 1998. WU Zongfan, LIU Meilin, ZHAO Shaoju, et al. Infrared and Night Vision Technology[M]. Beijing: National Defense of Industry Press, 1998.
[9] Willardson R K, Albert C Beer. Semiconductors and Semimetals, V18 Mercury Cadmium Telluride[M]. New York: ACADEMIC PRESS, A Subsidiary of Harcourt Brace Jovanovich, Publishers, 1981.
[10] Randy A Nicholson, Kimberly D Mead, Robert W Smith, et al. Testing of focal plane arrays at the AEDC[C]// Proc. of SPIE, 1992, 1686: 2-12.
[11] Rodriguez-Ramos L F, Rodriguez-Mora A, Sosa N, et al. Detector test and calibration facility a IAC[C]// Proc. of SPIE, 1992, 1686: 13-20.
[12] Herbert M Runciman. Influence of technology on FLIR waveband selection[C]// Proc. of SPIE, 1995, 2470: 156-167.
[13] Vishnu Gopal. NETD performance of an IR detector in a hybrid FPA[J]. Infrared Physics & Technology, 1995, 36: 937-948.
[14] Antoni Rogalski. Infrared Detectors[M]. Second Edition: Boca Raton: CRC Press, 2011.
[15] 丁瑞军, 梁平治, 唐红兰, 等. 红外焦平面阵列参数测试方法: GB/T 17444-2013[S]//中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 北京: 中国标准出版社, 2014. DING Ruijun, LIANG Pingzhi, TANG Honglan, et al. Measuring methods for parameters of infrared focal plane arrays: GB/T 17444-2013 [S]//The State Administration of quality supervision and inspection of the people's Republic of China, Standardization Administration of the People's Republic of China, Beijing: China Standard Press, 2014.
[16] Gravrand O, Destefanis G, Bisotto S, et al. Issues in HgCdTe research and expected progress in infrared detector fabrication[J]. Journal of Electronic Materials, 2013, 42(11): 3349-3358. DOI: 10.1007/s11664-013-2803-9
[17] Alain Manissadjian, Philippe Tribolet, Gérard Destefanis, et al. Long wave HgCdTe staring arrays at Sofradir: from 9 μm to 13+μm cut-offs for high performance applications[C]//Proc. of SPIE, 2005, 5783: 231-242.
[18] 曹海源, 黎伟, 米朝伟, 等. 热成像系统噪声等效温差测试算法及工程应用[J]. 电光与控制, 2021(6): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ202106018.htm CAO Haiyuan, LI Wei, MI Chaowei. A NETD test algorithm for thermal imaging systems and its engineering application [J]. Electronic Optics & Control, 2021(6): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ202106018.htm
[19] 乐丽珠, 陆正杰, 王小凤, 等. 空间噪声等效温差测试方法研究[J]. 红外技术, 2016, 38(6): 519-523. http://hwjs.nvir.cn/article/id/hwjs201606014 YUE lizhu, LU Zhengjie, WANG Xiaofeng, et al. Test method of spatial noise equivalent temperature difference[J]. Infrared Technology, 2016, 38(6): 519-523. http://hwjs.nvir.cn/article/id/hwjs201606014
[20] 魏东, 徐世伟, 王大鹏. 红外系统NETD测试对比与分析[J]. 光电技术应用, 2012(6): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYG201206010.htm WEI Dong, XU Shiwei, WANG Dapeng, Comparison and analysis on NETD testing of infrared system[J]. Electro-Optic Technology Application, 2012(6): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYG201206010.htm
[21] CAO Haiyuan, LI Wei, HUA Chu, et al. Research on performance test technology of infrared spectral imaging equipmentC]// Proc. of SPIE, 2020, 11780: 117800V-1-6.
[22] 吴东生. 光子探测器的光子噪声[J]. 长春光学精密机械学院学报, 1983(3): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM198303005.htm WU Dongsheng. Photon noise of photon detector[J]. Journal of Changchun Institute of Optics and Precision Mechanics, 1983(3): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM198303005.htm
[23] Philippe Tribolet, Philippe Chorier, Alain Manissadjian, et al. High performance infrared detectors at Sofradir[C]// Proc. of SPIE, 2000, 4028: 438-456.
-
期刊类型引用(1)
1. 周冰,贺宣,刘贺雄,李秉璇,黄富瑜. 非制冷微测辐射热计受激光辐照的温度响应. 激光与红外. 2020(08): 996-1001 . 百度学术
其他类型引用(0)