飞机尾喷流诱导速度建模与仿真

杨立波, 丛岩

杨立波, 丛岩. 飞机尾喷流诱导速度建模与仿真[J]. 红外技术, 2021, 43(10): 940-948.
引用本文: 杨立波, 丛岩. 飞机尾喷流诱导速度建模与仿真[J]. 红外技术, 2021, 43(10): 940-948.
YANG Libo, CONG Yan. Modeling and Simulation of Jet-and Wake-Flow-Induced Velocity of Aircraft[J]. Infrared Technology , 2021, 43(10): 940-948.
Citation: YANG Libo, CONG Yan. Modeling and Simulation of Jet-and Wake-Flow-Induced Velocity of Aircraft[J]. Infrared Technology , 2021, 43(10): 940-948.

飞机尾喷流诱导速度建模与仿真

基金项目: 

东莞市社会科技发展(一般)项目 2019507154529

详细信息
    作者简介:

    杨立波(1981-),男,黑龙江木兰县人,汉族,硕士,副教授,研究方向为智能控制技术。E-mail:yanglibo_1981ylb@163.com

  • 中图分类号: TJ7

Modeling and Simulation of Jet-and Wake-Flow-Induced Velocity of Aircraft

  • 摘要: 本文对飞机尾喷流诱导速度进行了仿真研究。建立了飞机尾涡模型以及尾喷口喷流模型,并仿真了飞机流场中的诱导速度。然后应用CFD(computational fluid dynamics)对飞机的流场进行计算,并将CFD计算结果与尾喷流模型计算结果进行对比。仿真对比结果表明:飞机尾后100 m区域内,尾涡模型计算结果误差较大,此时应采用CFD对尾流场进行计算;而在尾后100 m区域外尾涡模型与CFD计算结果较为一致,尾涡模型的计算结果能够达到精度要求。
    Abstract: The jet-and wake-flow-induced velocities of aircraft were analyzed in this study. Wake vortex and jet flow models were established, and the induced velocity of the aircraft was simultaneously simulated in the wake flow field. Then, the flow field of the aircraft was computed via computational fluid dynamics(CFD), the results of which were compared with those of the wake vortex models. The comparison showed that the errors computed using the wake vortex models were large, which suggests that the wake flow field should be computed via CFD within 100 m of the aircraft tail; these results are consistent with the CFD results beyond 100 m from the aircraft tail, and the wake vortex models meet the accuracy requirements.
  • 图  1   飞机翼尖涡

    Figure  1.   Wing tip vortex of aircraft

    图  2   尾涡对飞机飞行的影响

    Figure  2.   The impact of wake vortex on flight

    图  3   涡诱导速度计算图

    Figure  3.   Vortex induced velocity computation figure

    图  4   喷流模型

    Figure  4.   Jet flow model

    图  5   计算域示意图

    Figure  5.   Computational domain schematic diagram

    图  6   飞机尾后涡线图

    Figure  6.   Vortex line figure after the tail of aircraft

    图  7   尾喷口计算域示意图

    Figure  7.   Jet nozzle computational domain schematic diagram

    图  8   尾喷流速度分布图

    Figure  8.   Jet flow velocity distribution diagram

    图  9   飞机尾后10 m处尾流场诱导速度

    Figure  9.   Induced velocity at 10 m after the tail of aircraft

    图  10   飞机尾后100 m处尾流场诱导速度

    Figure  10.   Induced velocity at 100 m after the tail of aircraft

    图  11   飞机尾后10 m对比结果

    Figure  11.   The comparison results at 10 m after the tail of aircraft

    图  12   飞机尾后100 m对比结果

    Figure  12.   The comparison results at 100 m after the tail of aircraft

    图  13   发动机喷流速度CFD计算结果

    Figure  13.   Jet flow velocity distribution computed via CFD

    图  14   喷流模型计算结果

    Figure  14.   Jet flow models computation results

  • [1]

    Proctor F H, Hamilton D W, Switzer G F. TASS driven algorithms for wake prediction[C]//41th AIAA Aerospace Sciences Meeting and Exhibit Reno, 2006: 1-20.

    [2]

    Hinton A, O Connor C J. Development of a wake vortex spacing system for airport capacity enhancement and delay reduction[C]//19th Digital Avionics Systems Conference, 2000, 1: 3E6/1-3E610.

    [3]

    Reimer H M, Vicroy D D. A preliminary study of a wake vortex encounter hazard boundary for a B737-100 airplane[R]. NASA-96-TM110223, 1996: 1-18.

    [4]

    Crichley J B, Foot P B. Analysis of incidents reported between 1972 and 1990[C]//Proceedings of the Aircraft Wake Vortices Conference, 1992: 1-10.

    [5]

    Murphy B, Callaghan O, Fox M. Overview of the structures investigation for the American airline flight 587 investigation[C]//46th AIAA/ASM E/AS-CE/AHS/ ASCStructures, Structural Dynamics & Materials Conference, 2005: 1-9.

    [6]

    Loucel R E, Crouch J D. Flight- simulator study of airplane encounters with perturbed trailing vortices[J]. Journal of Aircraft, 2005, 42(4): 924-931. DOI: 10.2514/1.8556

    [7] 程学东, 范修宏. 大编队飞行尾流规避研究[J]. 保定学院学报, 2012, 23(3): 104-107. https://www.cnki.com.cn/Article/CJFDTOTAL-BDSZ201003034.htm

    CHENG Xuedong, FAN Xiuhong. Research on avoiding the wake of the larger formatting[J]. Journal of Baoding University, 2012, 23(3): 104-107. https://www.cnki.com.cn/Article/CJFDTOTAL-BDSZ201003034.htm

    [8] 魏志强, 徐肖豪. 飞机尾涡流场的建模与仿真计算研究[J]. 交通运输系统工程与信息, 2010, 10(4): 186-191. DOI: 10.3969/j.issn.1009-6744.2010.04.029

    WEI Zhiqiang, XU Xiaohao. Modeling and simulating of flow field for aircraft wake vortex[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(4): 186-191. DOI: 10.3969/j.issn.1009-6744.2010.04.029

    [9] 黄烁桥, 申功炘, Robert Konrat, 等. 喷流对飞机尾流涡影响的试验研究[J]. 航空学报, 2010, 31(5): 899-908. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201005005.htm

    HUANG Shuoqiao, SHEN Gongxin, ROBERT Konrat, et al. Experimental investigation of influence of jets on aircraft wake vortices[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 899-908. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201005005.htm

    [10] 周彬, 王雪松, 王涛, 等. 侧向风速对飞机尾流运动的影响[J]. 航空学报, 2009, 30(5): 773-779. DOI: 10.3321/j.issn:1000-6893.2009.05.001

    ZHOU Bin, WANG Xuesong, WANG Tao, et al. Influence of crosswind speeds on aircraft wake vortex movement[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5): 773-779. DOI: 10.3321/j.issn:1000-6893.2009.05.001

    [11] 钱翼稷. 空气动力学[M]. 北京: 北京航空航天大学出版社, 2005.

    QIAN Yishe. Aerodynamics[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2005.

    [12]

    Laurence H M. ATM decision support tool for wake vortex hazard management combining sensors and modeling[C]//6th AIAA Atmospheric and Space Environments Conference, 2014: doi: 10.2514/6.2014-2332.

    [13]

    Schwarz C, Hahn K U, Fischenberg D. Wake encounter severity assessment based on validated aerodynamic interaction models[C]//AIAA Guidance, Navigation, and Control Conference, 2010: 1-9.

    [14] 周彬, 王雪松, 王涛, 等. 飞机尾流的介电常数分布特性分析[J]. 微波学报, 2008, 24: 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2008S1008.htm

    ZHOU Bin, WANG Xuesong, WANG Tao, et al. Analysis of the dielectric constant distributing characteristic of aircraft wake vortices[J]. Journal of Microwaves, 2008, 24: 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2008S1008.htm

    [15] 李大伟, 王宏伦. 自动空中加油阶段加油机尾涡流场建模与仿真[J]. 北京航空航天大学学报, 2010, 36(7): 776-797. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201007006.htm

    LI Dawei, WANG Honglun. Wake vortex effectmodeling and simulation in automated aerial refueling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7): 776-797. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201007006.htm

    [16]

    Loucel R E, Crouch J D. Flight-simulator study of airplane encounters with perturbed trailing vortices[J]. Journal of Aircraft, 2005, 42(4): 924-931. DOI: 10.2514/1.8556

    [17]

    Proctor F H. Numerical simulation of wake vortices measured during the Idaho falls and Memphis field programs[C]//14th Applied Aerodynamics Conference, 1996: 1-18.

    [18] 周彬. 飞机尾流的微结构特征及散射特性研究[D]. 长沙: 国防科学技术大学, 2009.

    ZHOU Bin. Study on the microstructure and scattering characteristics of aircraft wake cortices[D]. Changsha: National University of Defense Technology, 2009.

  • 期刊类型引用(8)

    1. 陈玮琳,裘莉娅,李争,王健,谭畅. 复杂背景下基于Vibe和改进LBP的运动目标检测算法. 激光与光电子学进展. 2023(04): 185-192 . 百度学术
    2. 杨会民,朱林林,阳薇,吴俊敏. 红外热成像电缆竖井超早期火灾探测设备故障检测系统. 自动化与仪器仪表. 2022(10): 282-285+291 . 百度学术
    3. 甄国涌,丁润琦,张凯华. 基于Camera Link的高可靠性图像数据传输设计. 仪表技术与传感器. 2021(01): 43-47 . 百度学术
    4. 宋珊珊,翟旭平. 一种改进的基于单高斯模型的红外异常目标检测算法. 红外技术. 2021(09): 885-888+894 . 本站查看
    5. 王晓利,马毓伯. 基于FPGA的红外遥控温度检测器设计. 数码世界. 2020(03): 61-63 . 百度学术
    6. 张延苏,吴滢跃. 基于FPGA的红外弱小目标检测算法. 红外技术. 2020(06): 566-572 . 本站查看
    7. 黄宇,张宝辉,吴杰,陈莹妍,吉莉,吴旭东,于世孔. 自适应多点定标非均匀性校正算法. 红外技术. 2020(07): 637-643 . 本站查看
    8. 刘奇,盖芳钦,叶有时,刘波,施蕾. 基于FPGA微型红外热电堆探测器空间应用. 红外技术. 2020(07): 611-617 . 本站查看

    其他类型引用(8)

图(14)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  86
  • PDF下载量:  38
  • 被引次数: 16
出版历程
  • 收稿日期:  2020-03-18
  • 修回日期:  2020-04-27
  • 刊出日期:  2021-10-19

目录

    /

    返回文章
    返回