Infrared Dome Pure Thermal Stress Analysis
-
摘要: 高速红外制导战术导弹飞行时,气动热(qw)剧烈,qw作用于导弹红外整流罩上,产生的热应力σ热是导致整流罩热炸裂的主要因素。针对此问题,在导弹整流罩早期研制阶段,对于整流罩选材和能否进行下一步约束状态研究模拟整流罩固结导弹金属壳体实际工作状态,提出一种简单快捷的判别方法,红外整流罩纯热应力σ纯热分析。将自由状态整流罩受到温度梯度▽T引起的σ纯热从叠加位移约束WΓ引起更大的σ热中剥离出来,抛开WΓ的影响,单独分析较小的σ纯热,进一步抓住引起整流罩热炸裂的主导因素。结合双色透波需求,以硫化锌ZnS红外整流罩为例,进行σ纯热仿真分析,ZnS材料强度极限σmax大于σ纯热,判定整流罩可以进入约束状态研究。经约束WΓ的σ热试验验证,整流罩未炸裂,佐证此方法为整流罩选材提供一种快捷判断。Abstract: When supersonic infrared guided tactical missiles fly, the infrared dome of the missile is affected by the intense aerodynamic heat. The thermal stress generated by heat is the main factor causes thermal cracking of the dome. In response to this problem, in the early development stage of the missile dome, a simple and quick method to select the dome material and whether the next restraint state can be studied is to simulate the actual working state of the solidified missile metal shell of the dome, infrared dome pure thermal stress analysis. The pure heat caused by the temperature gradient ▽T of the free state dome is separated from the larger heat caused by the superimposed displacement constraint, the smaller pure heat is analyzed separately. The leading factor causing the thermal explosion of the dome is analyzed. Combining the dual-color infrared transmission requirements, taking the zinc sulfide infrared dome as an example, the pure heat simulation is analyzed. The strength limit of ZnS material is greater than pure heat, and the dome can enter the constrained state. In the thermal test the dome did not burst, which proves that this method can be used for the selection of dome materials.
-
Keywords:
- pure thermal stress /
- fast force judgement /
- freedom status /
- infrared dome
-
-
表 1 双色红外整流罩材料光学性能与力学性能(厚度2 mm)
Table 1 Double wavelength infrared dome material optical and force property
-
[1] 李建华, 郭常宁, 许泉, 等. 红外空空导弹头罩热应力分析[J]. 强度与环境, 2012, 39(2): 46-52. LI Jianhua, GUO Changning, XU Quan, et al. Thermal stress analysis for the dome of the infrared air-to-air missile[J]. Structure & Environment Engineering, 2012, 39(2): 46-52.
[2] 徐建, 蒋军亮, 王琦, 等. 头罩热试验中加热及加载技术的应用与研究[J]. 结构强度研究, 2009(4): 28-31. XU Jian, JIANG Junliang, WANG Qi, et al. Application and research for the heating and loading technology in the dome thermal experiment[J]. Structure and Strength Research, 2009(4): 28-31.
[3] 范绪箕. 高速飞行器热结构分析与应用[M]. 北京: 国防工业出版社, 2009. FAN Xuji. Thermal Structures Analysis and Applications of Highspeed Vehicles[M]. Beijing: National Defense Industry Press, 2009.
[4] 赵红卫, 侯天晋, 朱斌. 尖晶石整流罩气动效应的试验研究[J]. 红外与激光工程, 2012, 41(2): 298-303. ZHAO Hongwei, HOU Tianjin, ZHU Bin. Experimental research of aerodynamic effects of spinel domes[J]. Infrared and Laser Engineering, 2012, 41(2): 298-303.
[5] 殷胜昔, 楚建新. 蓝宝石整流罩与金属弹体新型的连接方法研究[J]. 航空精密制造技术, 2010, 46(1): 54-57. YIN Shengxi, CHU Jianxin. Joining of sapphire dome and metal housing[J]. Aviation Precision Manufacturing Technology, 2010, 46(1): 54-57.
[6] 姜振海. 超音速共形导引头整流罩热流固耦合[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2012. JIANG Zhenhai. Thermal-fluid-structure coupled analysis of the supersonic conformal dome[D]. Changchun: Institute of optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2012.
[7] Claude A. Klein. Infrared Missile Domes: Heat Flux and Thermal Shock[C]//SPIE High Heat Flux Engineering Ⅱ, 1993, 1997: 150-169.
[8] Jeffrey S. Lin, Louis B. Weckesser. Thermal Shock Capabilities of Infrared Dome Materials[J]. Johns Hopkins APL Technical Digest, 1992, 13(3): 379-385.
[9] Claude A. Klein. Infrared Missile Domes: Is there a Figure of Merit for Thermal Shock[C]//SPIE Window and Dome Technologies and Materials Ⅲ, 1992, 1760: 338-357.
[10] 王曼霞, 赵稼祥. 国外红外材料的现状与展望[J]. 宇航材料工艺, 1996, 3: 1-7. WANG Manxia, ZHAO Jiaxiang. The Present Status and Further Development of IR Materials Abroad[J]. Aerospace Materials & Technology, 1996, 3: 1-7.
[11] 段萌, 张运强, 潘国庆. 超声速长波红外整流罩材料研究进展[J]. 人工晶体学报, 2016, 45(12): 2883-2889. DUAN Meng, ZHANG Yunqiang, PAN Guoqing. Research progress of supersonic LWIR dome Materials[J]. Journal of Synthetic Crystals, 2016, 45(12): 2883-2889.
[12] 甘硕文, 杨勇, 廉伟艳, 等. 热压硫化锌后处理改性研究及其高温特性分析[J]. 红外与激光工程, 2015, 44(8): 2435-2439. GAN Shuowen, YANG Yong, LIAN Weiyan, et al. HP ZnS after Treatment Research and Its High Temperature Analysis[J]. Infrared and Laser Engineering, 2015, 44(8): 2435-2439.
[13] 余怀之. 红外光学材料[M]. 第2版, 北京: 国防工业出版社, 2015. YU Huaizhi. Infrared Optical Material[M]. 2nd Edition, Beijing: National Defense Industry Press, 2015.
[14] 张云, 王淑岩, 孔益善, 等. 超音速状态下整流罩红外窗口的选型问题研究[J]. 红外技术, 1999, 21(4): 786-790. DOI: 10.1109/ISIC.1999.796628 ZHANG Yun, WANG Shuyan, KONG Yishan, et al. Research for selected model problem of dome infrared window under the supersonic condition[J]. Infrared Technology, 1999, 21(4): 786-790. DOI: 10.1109/ISIC.1999.796628
[15] 张天, 魏群, 王超, 等. 氟化镁共形整流罩热障效应分析与试验[J]. 红外与激光工程, 2016, 45(2): 213-217. ZHANG Tianyi, WEI Qun, WANG Chao, et al. Thermal barrier effect analysis of magnesium-fluoride conformal dome and the experimental validation[J]. Infrared and Laser Engineering, 2016, 45(2): 213-217.
[16] 钱滨江, 伍贻文, 常家芳, 等. 简明传热手册[M]. 北京: 高等教育出版社, 1983. QIAN Bingjiang, WU Yiwen, CHANG Jiafang, et al. Concise handbook for thermal[M]. Beijing: Higher Education Press, 1983.
[17] T. R. 钱德拉佩特拉, A. D. 贝莱冈度. 曾攀, 雷丽萍译. 工程中的有限元法[M]. 北京: 机械工业出版社, 2014. Chandrupatla T R, Belegundu A D. ZENG Pang, Lei Liping, translate. Introduction to Finite Elements in Engineering[M]. Beijing: Machine Industry Press, 2014.
[18] 洪晶. 固体的力学和热学性质[M]. 北京: 人民教育出版社, 1980: 40-44. HONG Jing. Mechanical and Thermal Property of Solid[M]. Beijing: People's Education Press, 1980: 40-44.
[19] 徐芝纶. 弹性力学[M]. 北京: 高等教育出版社, 2016: 224-230. XU Zhilun. Elasticity[M]. Beijing: Higher Education Press, 2016: 224-230.
[20] LIU Yuanchun, HE Yurong, YUAN Zigui, et al. Numerical and experimental study on thermal shock damage of CVD ZnS infrared window material[J]. J. Alloys and Compounds, 2014, 589: 101-108. http://www.sciencedirect.com/science/article/pii/S0925838813028673
[21] 谢启明, 李奕威, 潘顺臣. 红外窗口和整流罩材料的发展和应用[J]. 红外技术, 2012, 34(10): 559-567. DOI: 10.3969/j.issn.1001-8891.2012.10.003 XIE Qiming, LI Yiwei, PAN Shunchen. The Development and Applications of IR Windows and Domes Materials[J]. Infrared Technology, 2012, 34(10): 559-567. DOI: 10.3969/j.issn.1001-8891.2012.10.003
-
期刊类型引用(12)
1. 刘和,宋璎珞,胡龙湘,刘国辉,王侃,王爱丽. 基于空间金字塔注意力机制残差网络的高光谱图像分类. 液晶与显示. 2024(06): 833-843 . 百度学术
2. 吴庆岗,刘中驰,贺梦坤. 融合MS3D-CNN和注意力机制的高光谱图像分类. 重庆理工大学学报(自然科学). 2023(02): 173-182 . 百度学术
3. 张云龙,齐国红,许新华. 基于模式识别技术的高光谱图像分类研究. 激光杂志. 2023(07): 95-99 . 百度学术
4. 贺敏慧,何敬,刘刚. 改进的混合2D-3D卷积神经网络高光谱图像分类研究. 时空信息学报. 2023(02): 184-192 . 百度学术
5. 张晓瑞. 基于卷积神经网络的多标签图像分类识别算法研究. 通化师范学院学报. 2022(02): 75-82 . 百度学术
6. 王欣,樊彦国. 基于改进DenseNet和空谱注意力机制的高光谱图像分类. 激光与光电子学进展. 2022(02): 211-222 . 百度学术
7. 孔祥魁,樊翠红. 多特征融合和最小二乘支持向量机的运动视频图像分类研究. 南京理工大学学报. 2022(02): 164-169+176 . 百度学术
8. 郑爽,梁云浩,武俊峰,乔壮,刘付刚. 基于AlexNet-SN网络的煤与煤矸石分类方法. 中国矿业. 2022(06): 79-85 . 百度学术
9. 王晨海,陈澳,王康乐. 虚拟现实环境下基于红外光谱的多特征纹理图像视觉传达方法研究. 激光杂志. 2022(11): 154-158 . 百度学术
10. 吴鸿昊,王立国,石瑶. 高光谱图像小样本分类的卷积神经网络方法. 中国图象图形学报. 2021(08): 2009-2020 . 百度学术
11. 吴涛. 基于特征提取和半监督学习的图像分类算法. 粘接. 2021(11): 92-97 . 百度学术
12. 杨远陶,刘瑞,曹礼刚,杨梅,陈景珏. 基于随机森林算法的珠海一号高光谱影像土地利用信息提取. 物探化探计算技术. 2021(06): 818-824 . 百度学术
其他类型引用(15)