一种复杂背景下的故障电气设备整体分割方法

A Holistic Segmentation Method for Faulty Electrical Equipment under Complex Background

  • 摘要: 针对变电站电气设备红外监测过程中,获取的红外图像背景复杂而导致故障设备定位不准确、分割难度较大等问题,提出了一种在复杂背景下对故障设备进行定位与整体分割的方法。首先,通过SLIC(Simple Linear Iterative Clustering)超像素算法对图像进行分割,并对超像素块进行Lab颜色空间转换,根据阈值判断是否存在故障并获取故障区域。然后,选取故障图像中最大联通量的较亮点作为种子,利用最大类间方差原理控制种子数目,通过改进区域生长法获取目标主体设备。最后,将故障区域与目标主体设备进行交集运算,完成对故障电气设备的整体分割。研究结果表明,该方法能有效完成复杂背景下的故障电气设备定位与整体分割。与其他分割方法相比,该方法获取的故障电气设备更加完整准确。

     

    Abstract: A method of positioning and integral segmentation of faulty equipment in infrared images acquired during the process of infrared monitoring of electrical equipment in substations with complex backgrounds is proposed to contribute to solving problems including inaccurate positioning and difficult segmentation of faulty equipment. First, the image was segmented using the SLIC superpixel algorithm and the superpixel block was transformed into the Lab color space. The faulty area was obtained after the fault was determined based on the threshold value. Second, relatively bright spots with the maximum connectivity in the image, including faulty equipment, were selected as the original seeds. The number of seeds was controlled based on the principle of maximum variance between classes. Accordingly, primary equipment was obtained using an improved regional growth method. Finally, the overall segmentation of the faulty electrical equipment was completed through an intersection calculation between the faulty area and the main equipment. The results show that the positioning and overall segmentation of faulty electrical equipment under complex backgrounds can be successfully completed using the proposed method. Compared with other segmentation methods, identification of faulty electrical equipment using this method is more complete and accurate.

     

/

返回文章
返回