留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种复杂背景下的故障电气设备整体分割方法

顾亚雄 冯爽爽

顾亚雄, 冯爽爽. 一种复杂背景下的故障电气设备整体分割方法[J]. 红外技术, 2023, 45(5): 455-462.
引用本文: 顾亚雄, 冯爽爽. 一种复杂背景下的故障电气设备整体分割方法[J]. 红外技术, 2023, 45(5): 455-462.
GU Yaxiong, FENG Shuangshuang. A Holistic Segmentation Method for Faulty Electrical Equipment under Complex Background[J]. Infrared Technology , 2023, 45(5): 455-462.
Citation: GU Yaxiong, FENG Shuangshuang. A Holistic Segmentation Method for Faulty Electrical Equipment under Complex Background[J]. Infrared Technology , 2023, 45(5): 455-462.

一种复杂背景下的故障电气设备整体分割方法

基金项目: 

四川省教育厅科技计划 19YYJC0802

详细信息
    作者简介:

    顾亚雄(1962-),男,博士,教授,硕士生导师,主要从事无损检测、光电测试技术与图像处理等方面的研究。E-mail: 410288153@qq.com

  • 中图分类号: TP391.9

A Holistic Segmentation Method for Faulty Electrical Equipment under Complex Background

  • 摘要: 针对变电站电气设备红外监测过程中,获取的红外图像背景复杂而导致故障设备定位不准确、分割难度较大等问题,提出了一种在复杂背景下对故障设备进行定位与整体分割的方法。首先,通过SLIC(Simple Linear Iterative Clustering)超像素算法对图像进行分割,并对超像素块进行Lab颜色空间转换,根据阈值判断是否存在故障并获取故障区域。然后,选取故障图像中最大联通量的较亮点作为种子,利用最大类间方差原理控制种子数目,通过改进区域生长法获取目标主体设备。最后,将故障区域与目标主体设备进行交集运算,完成对故障电气设备的整体分割。研究结果表明,该方法能有效完成复杂背景下的故障电气设备定位与整体分割。与其他分割方法相比,该方法获取的故障电气设备更加完整准确。
  • 图  1  基于SLIC故障区域分割算法流程图

    Figure  1.  Flow chart for fault region segmentation based on SLIC algorithm

    图  2  本文算法流程图

    Figure  2.  Flow chart for the proposed algorithm

    图  3  故障定位结果

    Figure  3.  Results of fault location

    图  4  不同种子数分割后的类间方差

    Figure  4.  Variances between classes after segmentation of different seed numbers

    图  5  4种算法分割结果

    Figure  5.  Results of segmentation due to four algorithms

    表  1  4种算法的实验结果

    Table  1.   Experimental results due to four algorithms

    Segmentation method OTSU Marked watershed Region growing Ours
    Precision Recall Precision Recall Precision Recall Precision Recall
    Picture1 0.4259 0.9271 0.3190 0.4037 0.9360 0.7686 0.9596 0.9240
    Picture2 0.8438 0.8425 0.8060 0.9148 0.7244 0.8680 0.9324 0.9660
    Picture3 0.4325 0.8945 0.4327 0.9192 0.7109 0.8136 0.9394 0.9393
    Picture4 0.4924 0.9582 0.5474 0.9306 0.7032 0.9454 0.9485 0.9218
    Picture5 0.2527 0.9322 0.4624 0.9261 0.6862 0.9244 0.9682 0.9388
    下载: 导出CSV
  • [1] 王启银, 薛建东, 任新辉. 一种自适应的变电站设备红外图像分割方法[J]. 红外技术, 2016, 38(9): 770-773. http://hwjs.nvir.cn/article/id/hwjs201609010

    WANG Qiyin, XUE Jiandong, REN Xinhui. An adaptive infrared image segmentation method for substation equipment[J]. Infrared Technology, 2016, 38(9): 770-773. http://hwjs.nvir.cn/article/id/hwjs201609010
    [2] 王小芳, 毛华敏. 一种复杂背景下的电力设备红外图像分割方法[J]. 红外技术, 2019, 41(12): 1111-1116. http://hwjs.nvir.cn/article/id/hwjs201912004

    WANG Xiaofang, MAO Huamin. Infrared image segmentation method for power equipment under complex background[J]. Infrared Technology, 2019, 41(12) : 1111-1116. http://hwjs.nvir.cn/article/id/hwjs201912004
    [3] 林颖, 郭志红, 陈玉峰. 基于卷积递归神经网络的电流互感器红外故障图像诊断[J]. 电力系统保护与控制, 2015, 43(16): 87-94. doi:  10.7667/j.issn.1674-3415.2015.16.013

    LIN Ying, GUO Zhihong, CHEN Yufeng. Convolutional-recursive network based current transformer infrared fault image diagnosis[J]. Power System Protection and Control, 2015, 43(16): 87-94. doi:  10.7667/j.issn.1674-3415.2015.16.013
    [4] 陈跃伟, 彭道刚, 夏飞, 等. 基于区域生长法和BP神经网络的红外图像识别[J]. 激光与红外, 2018, 48(3): 401-408. doi:  10.3969/j.issn.1001-5078.2018.03.024

    CHEN Yuewei, PENG Daogang, XIA Fei, et al. Infrared image recognition based on region growing method and BP neural network[J]. Laser & Infrared, 2018, 48(3): 401-408. doi:  10.3969/j.issn.1001-5078.2018.03.024
    [5] 贾鑫, 张惊雷, 温显斌. 双监督信号深度学习的电气设备红外故障识别[J]. 红外与激光工程, 2018, 285(7): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201807005.htm

    JIA Xin, ZHANG Jinglei, WEN Xianbin. Infrared fault identification of electrical equipment based on dual supervised signal deep learning[J]. Infrared and Laser Engineering, 2018, 285(7): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201807005.htm
    [6] 尹阳. 基于红外图像的变电站设备识别与热状态监测系统研究[D]. 西安: 西安科技大学, 2018.

    YIN Yang. Research on Substation Equipment Identification and Thermal State Monitoring System Based on Infrared Image[D]. Xi'an: Xi'an University of Science and Technology, 2018.
    [7] 余成波, 曾亮, 张林. 基于OTSU和区域生长的电气设备多点故障分割[J]. 红外技术, 2018, 40(10): 1008-1012. http://hwjs.nvir.cn/article/id/hwjs201810013

    YU Chengbo, ZENG Liang, ZHANG Lin. Multipoint fault segmentation for electrical equipment based on OTSU and regional growth[J]. Infrared Technology, 2018, 40(10): 1008-1012. http://hwjs.nvir.cn/article/id/hwjs201810013
    [8] 赵梦. 基于红外图像的电力设备故障分析研究[D]. 西安: 西安理工大学, 2020.

    ZHAO Meng. Research on Fault Analysis of Power Equipment Based on Infrared Image [D]. Xi 'an: Xi 'an University of Technology, 2020.
    [9] 任新辉. 基于红外技术的变电站设备识别与热故障诊断[D]. 成都: 西南交通大学, 2016.

    REN Xinhui. Substation Equipment Identification and Thermal Fault Diagnosis Based on Infrared Technology[D]. Chengdu: Southwest Jiaotong University, 2016.
    [10] 张锦文. 变电站电气设备红外图像分割方法研究[D]. 北京: 华北电力大学, 2018.

    ZHANG Jinwen. Research on Infrared Image Segmentation Method of Electrical Equipment in Substation[D]. Beijing: North China Electric Power University, 2018.
    [11] 康龙. 基于红外图像处理的变电站设备故障诊断[D]. 北京: 华北电力大学, 2016.

    KANG Long. Fault Diagnosis of Substation Equipment Based on Infrared Image Processing[D]. Beijing: North China Electric Power University, 2016.
    [12] 郭铭. 基于红外成像技术的变电站电气设备热故障诊断研究[D]. 阜新: 辽宁工程大学, 2019.

    GUO Ming. Research on Thermal Fault Diagnosis of Electrical Equipment In Substation Based on Infrared Imaging Technology[D]. Fuxin: Liaoning Engineering University, 2019.
    [13] 刘辉, 石小龙. 结合显著性和超像素改进的GrabCut图像分割[J]. 红外技术, 2018, 40(1): 55-61. http://hwjs.nvir.cn/article/id/hwjs201801010

    LIU H, SHI X L. Improved grab cut segmentation based on salience and superpixels[J]. Infrared Technology, 2018, 40(1): 55-61. http://hwjs.nvir.cn/article/id/hwjs201801010
    [14] Levinshtein A, Stere A, Kutulakos K N, et al. Turbopixels: fast superpixels using geometric flows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2290-2297. doi:  10.1109/TPAMI.2009.96
    [15] REN X F, Malik J. Learning a classification model for segmentation[C]//Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003: 10.
    [16] Veksler O, Boykov Y, Mehrani P. Superpixels and supervoxels in an energy optimization framework[C]//European Conference on Computer Vision(ECCV), 2013: 13-35.
    [17] 赵文涛, 曹昕鸷, 田志勇. 基于自适应阈值区域生长的红外舰船目标分割方法[J]. 红外技术, 2018, 40(2): 158-163. http://hwjs.nvir.cn/article/id/hwjs201802010

    ZHAO Wentao, CAO Xinzhi, TIAN Zhiyong. Infrared ship target segmentation based on adaptive threshold region growth[J]. Infrared Technology, 2018, 40(2): 158-163. http://hwjs.nvir.cn/article/id/hwjs201802010
    [18] ZUCKER S W. Region growing: Childhood and adolescence[J]. Computer Graphics Image Processing, 1976(5): 382-399. http://ar.newsmth.net/att/dfd6fe6c43255/Region_growing_Childhood_and_adolescence.pdf
    [19] LI J, QIU M, ZHANG Y, et al. A fast obstacle detection method by fusion of double-layer region growing algorithm and grid-SECOND detector[J]. IEEE Access, 2020, 9: 32053-32063. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9309211
    [20] WANG W, WANG X J, LIU X W, et al. Image segmentation algorithm based on image complexity[J]. Journal of Detection & Control, 2015, 37(3): 5-9.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  332
  • HTML全文浏览量:  27
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-15
  • 修回日期:  2021-06-15
  • 刊出日期:  2023-05-20

目录

    /

    返回文章
    返回