Simulation and Design of Infrared Heating Cage Based on Micro-Space Camera
-
摘要: 在航天器热控技术领域,常采用红外加热笼模拟各表面的到达外热流,但随着模拟表面特征尺寸的逐渐变小,需要重新评估该模拟方法的合理性和准确性。本文基于某微型空间相机,以对外热流最为敏感的散热面为研究对象,开展红外加热笼仿真分析与优化设计的研究。采用有限元法建立红外加热笼-黑片热流计的系统仿真模型,分析了传统红外加热笼控制方法对模拟表面总到达能量和热流密度均匀性的影响。基于上述结果,通过适当扩大加热笼尺寸和调整热流计粘贴位置,提高模拟表面的热流密度均匀性,保证总到达能量满足保守设计原则。对比分析得出,优化设计前后散热面热流密度的统计方差由102.0下降至27.0、均匀性提升效果显著。本文研究内容也可为其他空间微小表面外热流的准确模拟提供参考、借鉴。Abstract: In spacecraft thermal control technology, infrared heating cages are used to simulate the external heat flow reaching each surface; however, the rationality and accuracy of this method must be re-evaluated when the feature size of the simulated surface decreases progressively. In this study, simulation analysis and design optimization of infrared heating cages were conducted based on a micro-space camera with the most sensitive heat dissipation surface for external heat flow. The finite element method was used to establish a simulation model of the infrared heating cage black-sheet heat flow meter system, and the influence of the traditional infrared heating cage control method on the total arrival energy and heat flow density uniformity of the simulated surface was analyzed. The results show that the heat flow density uniformity of the simulated surface was improved by appropriately enlarging the heating cage and adjusting the position of the heat flow meter paste to ensure that the total arrival energy satisfied the conservative design principle. The statistical variances in the heat flow density of the radiator surface before and after the optimized design were 102.0 and 27.0, respectively, and the homogenization effect was significant. This study can be used as a reference for the accurate simulation of heat flows on other tiny space surfaces.
-
-
表 1 传统加热笼控制方法下敏感片平衡温度
Table 1 Equilibrium temperature of sensitive sheet under conventional heating cage control method
Sensitive sheet code Steady state average temperature /℃ RLJ-1 -14.1 RLJ-2 4.5 RLJ-3 -13.1 RLJ-4 2.2 RLJ-5 20.9 RLJ-6 2.7 RLJ-7 18.8 RLJ-8 0.2 RLJ-9 18.9 表 2 不同热流计控制加热笼时敏感片的平衡温度
Table 2 Equilibrium temperature of the sensitive sheet when controlling the heating cage with different heat flow meters
Sensitive sheet code Steady state average temperature/℃ RLJ-1 to control RLJ-2 to control RLJ-4 to control RLJ-1 19.6 0.4 2.2 RLJ-2 40.7 20.0 21.9 RLJ-3 20.6 1.3 3.1 RLJ-4 37.9 17.5 19.4 RLJ-5 59.2 37.3 39.2 RLJ-6 38.5 18.0 19.9 RLJ-7 14.4 -4.5 -2.7 RLJ-8 35.8 15.5 17.3 RLJ-9 14.5 -4.5 -2.7 表 3 改进结构的敏感片的平衡温度
Table 3 Equilibrium temperature of sensitive sheet with improved structure
/℃ Sensitive sheet code Heat cage size/mm 233×255 263×275 293×295 323×315 353×335 383×355 413×375 443×395 RLJ-1 19.6 19.4 20.1 20.1 19.7 20 20.2 20.7 RLJ-2 40.7 33 29.5 27.1 24.8 24.3 23.9 24.1 RLJ-3 20.6 20.2 20.9 20.9 20.3 20.8 20.9 21.1 RLJ-4 37.9 32.5 29.7 27.6 25.6 24.8 24.4 23.9 RLJ-5 59.2 45.6 39.1 35.2 31.1 29.2 28 27.3 RLJ-6 38.5 32.8 30 27.9 25.9 25.1 24.6 24 RLJ-7 14.4 16.9 18 18.7 18.6 19.6 20.2 20.4 RLJ-8 35.8 29.4 26.4 24.8 23.1 23.4 23.4 23.6 RLJ-9 14.5 16.8 17.7 18.5 18.4 19.4 20 20.4 -
[1] 侯增祺, 胡金刚. 航天器热控制技术-原理及其应用[M]. 北京: 中国科学技术出版社, 2007. HOU Zengqi, HU Jingang. Spacecraft Thermal Control Technology: Principles and Applications[M]. Beijing: China Science and Technology Press, 2007.
[2] 黄本诚, 马有礼. 航天器空间环境试验技术[M]. 北京: 国防工业出版社, 2002. HUANG Bencheng, MA Youli. Space Environment Test Technology of Spacecraft[M]. Beijing: National Defence Industry Press, 2002.
[3] 刘绍然, 许忠旭, 张春元, 等. "希望一号"卫星热平衡试验的误差分析[J]. 航天器环境工程, 2012, 29(5): 514-521. https://www.cnki.com.cn/Article/CJFDTotal-HTHJ201205009.htm LIU Shaoran, XU Zhongxu, ZHANG Chunyuan. The error analysis of satellite thermal balance test for Xiwang-1 satellite[J]. Spacecraft Environment Engineering, 2012, 29(5): 514-521. https://www.cnki.com.cn/Article/CJFDTotal-HTHJ201205009.htm
[4] 高庆华, 毕研强, 王晶, 等. 红外加热笼进行瞬态外热流模拟的优化方法[J]. 航天器环境工程, 2017, 34(3): 284-289. GAO Qinghua, BI Yanqiang, WANG Jing, et al. Optimization method for transient heat flux simulation with infrared heating cage[J]. Spacecraft Environment Engineering, 2017, 34(3): 284-289.
[5] 王刘杰, 黄伟芬, 徐水红, 等. 舱外航天服热试验外热流模拟方法改进研究[J]. 航天器环境工程, 2012, 29(5): 508-513. https://www.seejournal.cn/article/id/7662dfcb-ce48-4bb2-a190-dd94c0663cc1 WANG Liujie, HUANG Weifen, XU Shuihong, et al. Improved method of simulating outer heat flux for EVA spacesuit thermal vacuum test[J]. Spacecraft Environment Engineering, 2012, 29(5): 508-513. https://www.seejournal.cn/article/id/7662dfcb-ce48-4bb2-a190-dd94c0663cc1
[6] 杨晓宁, 孙玉玮, 余谦虚. 提高红外灯阵热流模拟均匀性的优化设计方法[J]. 航天器环境工程, 2012, 29(1): 27-31. https://www.seejournal.cn/article/id/5fc1e1d2-3636-4691-9594-d9e431a41005 YANG Xiaoning, SUN Yuwei, YU Qianxu. The optimized design for improving flux uniformity of infrared lamp array[J]. Spacecraft Environment Engineering, 2012, 29(1): 27-31. https://www.seejournal.cn/article/id/5fc1e1d2-3636-4691-9594-d9e431a41005
[7] 杨晓宁, 孙玉玮. 红外加热笼覆盖系数对热流均匀性的影响研究[J]. 航天器工程, 2008(5): 38-41. YANG Xiaoning, SUN Yuwei. Influence of infrared heating cage coverage coefficient on flux uniformity[J]. Spacecraft Engineering, 2008(5): 38-41.
[8] 季琨, 张丽新. 卫星真空热试验用红外加热笼抗热干扰设计[J]. 航天器环境工程, 2009, 26(3): 236-239. https://www.seejournal.cn/article/id/299cb8f1-0164-4ff1-9782-435e700e5fdd JI Kun, ZHANG Lixin. Anti-disturbance design of infrared heating cage in vacuum thermal test for satellite[J]. Spacecraft Environment Engineering, 2009, 26(3): 236-239. https://www.seejournal.cn/article/id/299cb8f1-0164-4ff1-9782-435e700e5fdd
[9] 韩继广, 陶晶亮, 盖照亮, 等. 航天器热平衡试验用大面阵外热流动态模拟系统设计及应用验证[J]. 航天器环境工程, 2019, 36(5): 495-501. DOI: 10.12126/see.2019.05.014 HAN J G, TAO J L, GAI Z L, et al. Design and application verification of large-area heat flow dynamic simulation system in thermal balance test of spacecraft[J]. Spacecraft Environment Engineering, 2019, 36(5): 495-501. DOI: 10.12126/see.2019.05.014
[10] 孙玉玮, 杨晓宁. 红外加热笼边缘效应对卫星表面热流均匀性的影响研究[J]. 航天器环境工程, 2006, 23(4): 222-226. https://www.seejournal.cn/article/id/c19fe4ec-581d-4f80-bbb7-95979a63ce6b SUN Yuwei, YANG Xiaoning. The margin effect of infrared heating array on the flux uniformity on spacecraft surface[J]. Spacecraft Environment Engineering, 2006, 23(4): 222-226. https://www.seejournal.cn/article/id/c19fe4ec-581d-4f80-bbb7-95979a63ce6b
[11] 孙玉玮, 杨晓宁, 李春杨. 圆台形红外加热笼仿真优化研究[J]. 航天器环境工程, 2011, 28(3): 222-227. DOI: 10.12126/see.2011.03.003 SUN Yuwei, YANG Xiaoning, LI Chunyang. Simulation study for the optimal design of conical infrared heating cage[J]. Spacecraft Environment Engineering, 2011, 28(3): 222-227. DOI: 10.12126/see.2011.03.003
[12] 谢吉慧, 苏新明, 秦家勇, 等. 大型航天器与外热流模拟装置的数字化结构匹配方法[J]. 航天器环境工程, 2018, 35(3): 288-292. DOI: 10.12126/see.2018.03.015 XIE J H, SU X M, QIN J Y, et al. A digital method for structure matching between large spacecraft and external heat flux simulation device[J]. Spacecraft Environment Engineering, 2018, 35(3): 288-292. DOI: 10.12126/see.2018.03.015
[13] 房红军, 徐志明, 宁东坡, 等. 微纳卫星热平衡试验热流计布点优化方法[J]. 航天器工程, 2021, 30(2): 136-141. FANG Hongjun, XU Zhiming, NING Dongpo. Optimization method of radiometer placement for micro-nano satellite thermal balance test[J]. Spacecraft Engineering, 2021, 30(2): 136-141.