针对多尺度目标的轻量级红外目标检测算法

A Lightweight Infrared Target Detection Algorithm for Multi-scale Targets

  • 摘要: 针对现有基于深度学习的红外目标检测算法参数量大、复杂度较高、对多尺度目标检测性能较差等问题,提出了一种针对多尺度目标的轻量级红外目标检测算法。算法以YOLOv3为基础,采用MobileNet V2轻量级骨干网络、设计改进的简化空间金字塔结构(simSPP)、Anchor Free机制、解耦头和简化正负样本分配策略(SimOTA)分别对Backbone、Neck和Head进行优化,最终得到模型大小为6.25 M,浮点运算量2.14 GFLOPs的LMD-YOLOv3轻量级检测算法。在构建的MTS-UAV数据集上mAP达到90.5%,在RTX2080Ti显卡上FPS达到99,与YOLOv3相比mAP提升了2.60%,模型大小为YOLOv3的1/10。

     

    Abstract: To solve the problems of large parameters, high complexity, and poor detection performance of multiscale targets in the existing infrared target detection algorithms based on deep learning, a lightweight infrared target detection algorithm for multiscale targets is proposed. Based on YOLOv3, the algorithm uses the MobileNet V2 backbone network, simplified spatial pyramid structure (simSPP), anchor-free mechanism, decoupling head, and simplified positive and negative sample allocation strategies (SimOTA) to optimize the backbone, neck, and head, respectively. Finally, LMD-YOLOv3 with the model size of 6.25 M and floating-point computation of 2.14 GFLOPs was obtained. Based on the MTS-UAV data set, the mAP reached 90.5%, and on the RTX2080Ti dataset, the FPS reached 99. Compared with YOLOv3, mAP increased by 11.7%, and the model size was only 1/10 of YOLOv3.

     

/

返回文章
返回