超长线列红外探测器拼接结构

杨小乐, 周峰, 史漫丽, 刘伟, 刘彦杰, 刘义良

杨小乐, 周峰, 史漫丽, 刘伟, 刘彦杰, 刘义良. 超长线列红外探测器拼接结构[J]. 红外技术, 2023, 45(6): 567-574.
引用本文: 杨小乐, 周峰, 史漫丽, 刘伟, 刘彦杰, 刘义良. 超长线列红外探测器拼接结构[J]. 红外技术, 2023, 45(6): 567-574.
YANG Xiaole, ZHOU Feng, SHI Manli, LIU Wei, LIU Yanjie, LIU Yiliang. Splicing Structure of Ultra-long Linear Infrared Detector[J]. Infrared Technology , 2023, 45(6): 567-574.
Citation: YANG Xiaole, ZHOU Feng, SHI Manli, LIU Wei, LIU Yanjie, LIU Yiliang. Splicing Structure of Ultra-long Linear Infrared Detector[J]. Infrared Technology , 2023, 45(6): 567-574.

超长线列红外探测器拼接结构

详细信息
    作者简介:

    杨小乐(1984-),男,硕士,高级工程师,主要从事红外遥感器设计研究,E-mail:274861918@qq.com

  • 中图分类号: TN215

Splicing Structure of Ultra-long Linear Infrared Detector

  • 摘要: 随着红外遥感技术的发展,航天各类应用对红外探测器阵列规模的需求已经超出了目前单模块探测器研制极限,需要通过光学或者机械拼接方法解决该问题。结合国内外先进的机械拼接技术,针对8模块超长线列拼接红外探测器研制,本文提出了拼接结构的4个设计要点和对探测器成像的影响,结合设计要点详细介绍拼接结构具体设计过程以及设计结果,最后给出拼接结构的测试方法以及一种非接触的平面度测试方法和测试结果。
    Abstract: With the development of infrared remote sensing technology, the demand for infrared detector arrays in various aerospace applications has exceeded the current developmental limit of single-module detectors. This problem needs to be solved by optical or mechanical splicing methods. Based on an advanced mechanical splicing technology, this study presents four design points of splicing structure and their influence on detector imaging for the development of an 8-module ultra-long linear splicing infrared detector. The specific design process of the design points and design results of the splicing structure are introduced in detail. The method for testing a splicing structure and a non-contact flatness test method are described; the test results are presented.
  • 图  1   2k×2k InSb单模块封装探测器[3]

    Figure  1.   2k×2k InSb single module packaged detector[3]

    图  2   4k×4k InSb拼接探测器[3]

    Figure  2.   4k×4k InSb splicing detector[3]

    图  3   4k×4k碲镉汞拼接探测器[4-5]

    Figure  3.   4k×4k MCT splicing detector[4-5]

    图  4   5×7碲镉汞拼接大面阵探测器[4-5]

    Figure  4.   5×7 MCT large area array splicing detector[4-5]

    图  5   2048×16拼接探测器[6]

    Figure  5.   2048×16 splicing detector[6]

    图  6   中电11所研制的多谱段集成TDI线列红外探测器[7-9]

    Figure  6.   Multi band integrated TDI line array infrared detector developed by 11th Institute of CETC

    图  7   探测器拼接排列示意图

    Figure  7.   Schematic diagram of detector splicing arrangement

    图  8   探测器冷箱封装结构

    Figure  8.   Detector cold box packaging structure

    图  9   探测器拼接结构

    Figure  9.   Detector splicing structure

    图  10   8模块探测器拼接版图示意图

    Figure  10.   Schematic diagram of 8-module detector splicing layout

    图  11   制冷机冷指与冷板

    Figure  11.   Refrigerator cold finger and cold plate

    图  12   有限元模型

    Figure  12.   Finite element model

    图  13   芯片法向变形(殷钢热膨胀系数为4.6e-6)

    Figure  13.   Chip normal deformation(Thermal expansion coefficient of Invar is 4.6e-6)

    图  14   芯片应力云图(殷钢热膨胀系数为4.6e-6)

    Figure  14.   Chip stress cloud map(Thermal expansion coefficient of is Invar 4.6e-6)

    图  15   低温平面度测试系统原理

    Figure  15.   Principle of low temperature flatness testing system

    图  16   拼接基板上标识

    Figure  16.   Identification on splicing substrate

    图  17   拼接系统的测试

    Figure  17.   Testing of splicing system

    图  18   低温平面度实测结果

    Figure  18.   Low temperature flatness measurement results

    表  1   两种机械拼接形式对比

    Table  1   Comparison of two mechanical splicing forms

    Component level Chip level
    Application Array device Linear device
    Electric-heating interface Independent Shared
    Imaging impact Seams No seams
    Volume and weight Large and weight Small and light
    Maintainability Easily replaceable Not easily replaceable
    Scalability Easy Not easy
    下载: 导出CSV

    表  2   不同殷钢热膨胀系数对应的最大应力

    Table  2   Maximum stress corresponding to different thermal expansion coefficients of Invar

    Thermal expansion coefficient 4.2e-6 4.4e-6 4.6e-6 4.8e-6 Maximum allowed value
    Chip/MPa 95.1 93.2 91.6 90.4 100
    Multilayer ceramics/MPa 36.4 35.9 35.9 36.5 100
    Filter/MPa 95.1 96.7 97.9 98.9 130
    下载: 导出CSV
  • [1] 邱民朴, 马文坡. 空间红外推扫成像系统探测器光学拼接方法[J]. 航天返回与遥感, 2019, 40(6): 51-58. DOI: 10.3969/j.issn.1009-8518.2019.06.007

    QIU Minpu, MA Wenpo. Optical butting of linear infrared detector array for space pushbroom imaging systems[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(6): 51-58. DOI: 10.3969/j.issn.1009-8518.2019.06.007

    [2] 吕玮东, 邓旭光, 练敏隆, 等. 空间用红外探测器拼接技术研究[J]. 红外技术, 2022, 40(11): 980-989. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202210001.htm

    LYU Weidong, DENG Xuguang, LIAN Minlong, et al. A study of infrared detector butted technology for space[J]. Infrared Technology, 2022, 40(11): 980-989. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202210001.htm

    [3]

    Alan W Hoffman, Elizabeth Corrales, Peter J Love, et al. 2k×2k InSb for astronomy[C]//Proc. of SPIE, 2004, 5499: 59-67.

    [4]

    Peter J Love, Alan W Hoffman, Ken J Ando, et al. 2k×2k HgCdTe detector arrays for VISTA and other applications[C]//Proc. of SPIE, 2004, 5499: 68-77.

    [5]

    Hall D N B, Luppino G, Hodapp K W, et al. A 4k×4k HgCdTe astronomical camera enabled by the James Webb Space Telescope NIR detector development program[C]//Proc. of SPIE, 2004, 5499: 1-14.

    [6]

    Zucker M, Pivnik I, Malkinson E, et al. Long mid-wave infrared detector with time delayed integration[C]//Proc of SPIE, 2003, 4820: 580-592.

    [7] 徐丽娜, 东海杰, 赵艳华, 等. 多谱段集成长线列拼接TDI红外探测器技术[J]. 上海航天, 2019, 36: 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT2019S2018.htm

    XU Lina, DONG Haijie, ZHAO Yanhua, et al. Multi-spectral intergraded long-liesplicing TDI infrared detector technology[J]. Aerospace Shanghai, 2019, 36: 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT2019S2018.htm

    [8] 王成刚, 东海杰. 超长线列碲镉汞红外探测器拼接方式对比分析[J]. 激光与红外, 2013, 43(8): 4. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201308017.htm

    WANG Chenggang, DONG Haijie. Butted manner analysis of long linear infrared focal plane detectors of MCT[J]. Laser & Infrared, 2013, 43(8): 4. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201308017.htm

    [9] 王成刚, 东海杰, 刘泽巍, 等. "高分五号"卫星多谱段集成TDI线列红外探测器[J]. 航天返回与遥感, 2018, 39(6): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201803012.htm

    WANG Chenggang, DONG Haijie, LIU Zewei, et al. Development of multispectral TDI linear infrared detector for GF-5 satellite[J]. Spacecraft Recovery & Remote Sensing, 2013, 43(8): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201803012.htm

    [10] 梅强, 曹学强, 张博文, 等. 空间光学相机焦面拼接热变形对图像配准影响[J]. 航天返回与遥感, 2021, 42(5): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202105005.htm

    MEI Qiang, CAO Xueqiang, ZHANG Bowen, et al. Analysis of the effect of butting assembly thermal deformation on image registration[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(5): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202105005.htm

    [11] 王克军, 董吉洪, 李威, 等. 空间遥感器线阵与面阵探测器共基板焦面组件设计[J]. 红外与激光工程, 2022, 49(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202005011.htm

    WANG Kejun, DONG Jihong, LI Wei, et al. Design of focal plane assembly of linear array and area array detector based on one substrate of space remote sensor[J]. Infrared and Laser Engineering, 2022, 49(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202005011.htm

    [12] 马军. 长线列长波红外探测器共面度评估模型[J]. 红外与激光工程, 2022, 51(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202203008.htm

    MA Jun. Coplanarity evaluation model of long linear LWIR detector[J]. Infrared and Laser Engineering, 2022, 51(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202203008.htm

    [13]

    Richard Blank, Selmer Anglin, James W Beletic. H2RG focal plane array and camera performance update[C]//Proc. of SPIE, 2012, 8453: 845310(DOI: 10.1117/12.926752).

    [14]

    BAI Yibin, William Tennant, Selmer Anglin. 4k×4k format 10 μm pixel pitch H4RG-10 hybrid CMOS silicon visible focal plane array for space astronomy[C]//Proc. of SPIE, 2012, 8453: 84530M.

    [15] 张磊, 东海杰, 王春生, 等. 拼接红外探测器冷头设计[J]. 激光与红外, 2017, 47(5): 591-596. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201705014.htm

    ZHANG Lei, DONG Haijie, WANG Chunsheng, et al. Design of cold head in mosaic infrared detector[J]. Laser & Infrared, 2017, 47(5): 591-596. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201705014.htm

    [16] 雍朝良, 林剑春, 赵明, 等. 空间大规模CMOS面阵焦平面拼接技术[J]. 红外与激光工程, 2012, 41(10): 2561-2566. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201210002.htm

    YONG Chaoliang, LIN Jianchun, ZHAO Ming, et al. Mosaic of spatial large scale CMOS focal plane array[J]. Infrared and Laser Engineering, 2012, 41(10): 2561-2566. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201210002.htm

  • 期刊类型引用(1)

    1. 夏晨旭,郝群,张一鸣,张韶辉,李凡飞,杨智慧,孙建坤. 基于结构光投影三维重建的人脸特征检测. 激光与光电子学进展. 2023(22): 186-192 . 百度学术

    其他类型引用(4)

图(18)  /  表(2)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  69
  • PDF下载量:  91
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-03-30
  • 修回日期:  2023-04-18
  • 刊出日期:  2023-06-19

目录

    /

    返回文章
    返回